The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The Tat protein of human immunodeficiency virus type 1, a growth factor for AIDS Kaposi sarcoma and cytokine-activated vascular cells, induces adhesion of the same cell types by using integrin receptors recognizing the RGD amino acid sequence.

Spindle-shaped cells of vascular origin are the probable tumor cells of Kaposi sarcoma (KS). These cells, derived from patients with KS and AIDS, proliferate in response to extracellular Tat protein of human immunodeficiency virus type 1. Normal vascular cells, believed to be the progenitors of AIDS-KS cells, acquire spindle morphology and become responsive to the mitogenic effect of Tat after culture with inflammatory cytokines. Such cytokines are increased in human immunodeficiency virus type 1-infected people, suggesting that immune stimulation (rather than immune deficiency) is a component of AIDS-KS pathogenesis. Here we show that (i) Tat promotes adhesion of AIDS-KS and normal vascular cells; (ii) adhesion of normal vascular cells to Tat is induced by exposure of the cells to the same cytokines; (iii) adhesion is associated with the amino acid sequence RGD of Tat through a specific interaction with the integrin receptors alpha 5 beta 1 and alpha v beta 3, although it is augmented by the basic region; and (iv) the expression of both integrins is increased by the same cytokines that promote these cells to acquire spindle morphology and become responsive to the adhesion and growth effects of Tat. The results also suggest that RGD-recognizing integrins mediate the vascular cell-growth-promoting effect of Tat.[1]

References

 
WikiGenes - Universities