The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Folding, flavinylation, and mitochondrial import of 6-hydroxy-D-nicotine oxidase fused to the presequence of rat dimethylglycine dehydrogenase.

We analyzed the folding, covalent flavinylation, and mitochondrial import of the rabbit reticulocyte lysate-translated bacterial 6-hydroxy-D-nicotine oxidase (6-HDNO) fused to the mitochondrial targeting sequence of rat liver dimethylglycine dehydrogenase. Translation of 6-HDNO in FAD-supplemented reticulocyte lysate resulted in a protein that contained covalently incorporated FAD, exhibited enzyme activity, and was trypsin-resistant, a characteristic of the tight conformation of the holoenzyme. The attached mitochondrial presequence did not prevent folding, binding of FAD, or enzyme activity of the 6-HDNO moiety of the fusion protein (pre-6-HDNO). Pre-6-HDNO was imported into rat liver mitochondria and processed by the mitochondrial processing peptidase. Incubation of the trypsin-resistant pre-holo-6-HDNO protein with deenergized rat liver mitochondria demonstrated that upon contact with mitochondria, the protein was unfolded and became trypsin sensitive. Mitochondrial import assays showed that the unfolded pre-holo-6-HDNO with covalently attached FAD was imported into rat liver mitochondria. Inside the mitochondrion the holo-6-HDNO was refolded into the trypsin-resistant conformation. However, when pre-apo-6-HDNO was imported only part of the protein became trypsin resistant (approximately 20%). Addition of FAD and the allosteric effector glycerol 3-phosphate to apo-6-HDNO containing mitochondrial matrix was required to transform the protein into the trypsin-resistant conformation characteristic of holo-6-HDNO.[1]


WikiGenes - Universities