The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Enhancer-trap targeting at the Broad-Complex locus of Drosophila melanogaster.

Here, we describe the exact replacement of a defective unmarked P element by an enhancer-trap transposon marked by the miniwhite gene and carrying lacZ as a reporter gene. The original defective P element was located in an intron of the Broad-Complex ( BRC), a key gene involved in metamorphosis. Replacement events resulted from conversions induced by the P-element transposase from a donor enhancer-trap element located on another chromosome. Six independent conversion events were selected. In all converted chromosomes, the enhancer-trap transposon was in the same orientation as the original P element. From the pattern of X-gal staining observed, lacZ expression likely reflects the regulatory influence of BRC enhancers on the convertant transposon. Reversion to wild type was achieved by excision of the enhancer-trap transposon. The six convertants were analyzed in detail at the nucleotide level. The occurrence of a polymorphism at position 33 of the P-element sequences led us to propose a conversion mechanism involving homologous P sequences for repair. This is in contrast to previously analyzed P-element transposase-induced conversion events and proposed models relying on sequence identity between genomic Drosophila sequences. The lack of any homology requirement other than between P element sequences means that our findings can be easily generalized. Targeting a marked P-element derivative at a precise site without loss or addition of genetic information makes it possible to exploit the hundreds of defective P elements scattered throughout the Drosophila genome by replacing them with engineered P elements, already available.[1]


  1. Enhancer-trap targeting at the Broad-Complex locus of Drosophila melanogaster. Gonzy-Tréboul, G., Lepesant, J.A., Deutsch, J. Genes Dev. (1995) [Pubmed]
WikiGenes - Universities