The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Molecular cloning of a mammalian hyaluronidase reveals identity with hemopexin, a serum heme-binding protein.

Hyaluronan is the most abundant glycosaminoglycan of the extracellular matrix and is a critical substrate for cellular attachment and locomotion. Little is known about the class of enzymes, termed hyaluronidases, that are responsible for hyaluronan catabolism in mammals. We have determined a partial amino acid sequence from a purified preparation of porcine liver hyaluronidase and have used this information as the basis for cloning complementary DNA that encodes the corresponding protein. When expressed in a recombinant baculovirus system, the protein exhibited hyaluronidase activity in a substrate-gel assay. The deduced sequence of this mammalian hyaluronidase is that of a 459-amino-acid polypeptide bearing four potential N-glycosylation sites as well as a copy of a proposed hyaluronan binding motif. Remarkably, amino acid sequence comparisons and immunologic cross-reactivities strongly suggest that the cloned protein is identical to hemopexin, an abundant, heme-binding serum protein. Although hemopexin has not previously been reported to possess any enzymatic activity, it includes a conserved domain found in collagenases, stromelysins, and other enzymes that metabolize the extracellular matrix. We conclude that hemopexin is the predominant hyaluronidase expressed in mammalian liver.[1]


  1. Molecular cloning of a mammalian hyaluronidase reveals identity with hemopexin, a serum heme-binding protein. Zhu, L., Hope, T.J., Hall, J., Davies, A., Stern, M., Muller-Eberhard, U., Stern, R., Parslow, T.G. J. Biol. Chem. (1994) [Pubmed]
WikiGenes - Universities