The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The GTP-bound form of the yeast Ran/TC4 homologue blocks nuclear protein import and appearance of poly(A)+ RNA in the cytoplasm.

Ran/TC4, a Ras-like GTP-binding protein, and its nucleotide exchanger, RCC1, have been implicated in control of protein movement into the nucleus and cytoplasmic accumulation of mRNA. Saccharomyces cerevisiae contains two homologues of the mammalian Ran/TC4, encoded by the GSP1 and GSP2 genes. We have constructed yeast strains that overproduce either wild-type Gsp1 or a form of Gsp1 with glycine-21 converted to valine (Gsp1-G21V), which we show stabilizes the GTP-bound form. Cells producing Gsp1-G21V have defects in localization of nuclear proteins; nuclear proteins accumulate in the cytoplasm following galactose induction of Gsp1-G21V. Similarly, cells producing Gsp1-G21V retain poly(A)+ RNA in their nuclei. These findings suggest that hydrolysis of GTP by Ran/TC4 is necessary for proper import of proteins into the nucleus and appearance of poly(A)+ RNA in the cytoplasm.[1]

References

  1. The GTP-bound form of the yeast Ran/TC4 homologue blocks nuclear protein import and appearance of poly(A)+ RNA in the cytoplasm. Schlenstedt, G., Saavedra, C., Loeb, J.D., Cole, C.N., Silver, P.A. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
 
WikiGenes - Universities