The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Drosophila mutants in the 55 kDa regulatory subunit of protein phosphatase 2A show strongly reduced ability to dephosphorylate substrates of p34cdc2.

The 55 kDa regulatory subunit of Drosophila protein phosphatase 2A is located in the cytoplasm at all cell cycle stages, by the criterion of immunofluorescence. We are unable to detect significant change in protein phosphatase activity during the nuclear division cycle of syncytial embryos. However, cell cycle function of the enzyme is suggested by the mitotic defects exhibited by two Drosophila mutants, aar1 and twinsP, defective in the gene encoding the 55 kDa subunit. The reduced levels of the 55 kDa subunit correlate with the loss of protein phosphatase 2A-like, okadaic acid-sensitive phosphatase activity of brain extracts against caldesmon and histone H1 phosphorylated by p34cdc2/cyclin B kinase, but not against phosphorylase a. Thus the mitotic defects of aar1 and twinsP are likely to result from the lack of dephosphorylation of specific substrates by protein phosphatase 2A.[1]

References

  1. Drosophila mutants in the 55 kDa regulatory subunit of protein phosphatase 2A show strongly reduced ability to dephosphorylate substrates of p34cdc2. Mayer-Jaekel, R.E., Ohkura, H., Ferrigno, P., Andjelkovic, N., Shiomi, K., Uemura, T., Glover, D.M., Hemmings, B.A. J. Cell. Sci. (1994) [Pubmed]
 
WikiGenes - Universities