Molecular cloning of murine pig-a, a gene for GPI-anchor biosynthesis, and demonstration of interspecies conservation of its structure, function, and genetic locus.
Many membrane proteins are anchored to the cell membrane by glycosylphosphatidylinositol (GPI). The core structure and biosynthesis of the GPI anchor are well conserved in eukaryote cells. We previously cloned a human PIGA gene that participates in GPI anchor biosynthesis. We have now cloned complementary and genomic DNA of Pig-a, the murine homologue of PIGA, and compared its function and gene structure with those of PIGA. The deduced amino acid sequence of mouse PIG-A is 88% identical with that of human PIG-A. Transfection of Pig-a cDNA complemented the defects of both a PIG-A-deficient murine cell line and a PIG-A-deficient human cell line, demonstrating that functions of mouse and human PIG-A are conserved. Like human PIGA, the chromosomal Pig-a gene has six exons and spans approximately 16 kb. Moreover, Pig-a was mapped to X-F3/4, which is syntenic to human Xp22.1, where PIGA is located. Thus, murine Pig-a provides a good animal model to study paroxysmal nocturnal hemoglobinuria, a disease caused by a somatic mutation of PIGA. Database analysis demonstrated that a yeast gene, SPT14, is homologous to Pig-a and PIGA and that these genes are members of a glycosyltransferase gene family.[1]References
- Molecular cloning of murine pig-a, a gene for GPI-anchor biosynthesis, and demonstration of interspecies conservation of its structure, function, and genetic locus. Kawagoe, K., Takeda, J., Endo, Y., Kinoshita, T. Genomics (1994) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg