Peroxynitrite-dependent chemiluminescence of amino acids, proteins, and intact cells.
Exposure of proteins to ONOO- (fatty acid-free bovine serum albumin ( BSA) and histones, 10 mg/ml) was accompanied by light emission which could be detected using a photon counter. Light emission upon addition of ONOO- to either histones or BSA increased linearly with ONOO- concentration at a rate of 50 +/- 4 and 66 +/- 4 cps/(mg protein.mM ONOO-), respectively (averages+SE). Bicarbonate (25 mM) increased ONOO(-)-dependent BSA chemiluminescence approximately 3-fold above baseline (221 +/- 6 cps/(mg protein.mM ONOO-)). The peak of peroxynitrite-dependent light emission was around 40-fold higher than when 1 mM tert-butyl-hydroperoxide (t-BOOH) and 1.6 microM hemin were used as oxidants. Fatty acid-containing BSA (0.04-0.08%) emitted 3.4-fold more light than pure BSA. Chemiluminescence increased with pH, being 4.5-fold higher at pH 8.8 than at pH 6. 0. However, the half-life of emissive species did not change with pH, suggesting that the process leading to the formation of electronically excited states is the same at all pHs. Tryptophan or N-acetyltyrosine oxidation by ONOO- was accompanied by chemiluminescence (130 +/- 10 and 14 +/- 3 cps/(mg amino acid.mM ONOO-), respectively). Exposure of DNA or isolated nucleotides to either t-BOOH/hemin or ONOO- was not accompanied by light emission. Leptomonas seymouri (an insect parasite used as a model of intact cells) exposed to ONOO- emitted 3700 +/- 400 cps/(mg protein.mM ONOO-), compared to 55 +/- 3 cps/(mg protein.mM peroxide) when t-BOOH was used as oxidant. While chemiluminescence of L. seymouri exposed to ONOO- increased measured at concentrations as low as 30 microM, carbonyl formation (from protein oxidation) and thiobarbituric acid-reactive substances (lipid peroxidation) could be measured only if cells were exposed to initial ONOO- larger than 700 microM. Spectral analysis suggests that excited carbonyls (emission wavelength 340-450 nm) are not produced in high proportions. A substantial amount of light is generated above 500 nm, part of which could come from triplet states of tryptophan and tyrosine.[1]References
- Peroxynitrite-dependent chemiluminescence of amino acids, proteins, and intact cells. Watts, B.P., Barnard, M., Turrens, J.F. Arch. Biochem. Biophys. (1995) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg