The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Bathyran     2-sulfanylidene-1,3- diazinane-4,6-dione

Synonyms: Austranal, Thiobarbituric, PubChem23365, CHEMBL584805, NSC-4733, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of NSC4733

 

Psychiatry related information on NSC4733

 

High impact information on NSC4733

  • Probucol treatment was associated a threefold increase in LDL resistance to copper-induced oxidative modification (P < 0.05) and a reduction in tissue lipid peroxidation (as assessed by thiobarbituric acid-reactive substances; P < 0.05) compared to animals fed cholesterol alone [10].
  • Modified LDL, isolated from pooled LDL of 10 patients, showed a higher electrophoretic mobility on agarose gels, a higher content of thiobarbituric acid reactive substances, and a higher cholesterol/protein ratio than native LDL and had a similar reactivity (antigen/protein ratio) in the assay as the in vitro MDA-modified LDL used for calibration [11].
  • Both ascorbate and probucol inhibited the oxidative modification of LDL in both systems to a similar degree as evidenced by the thiobarbituric acid-reacting substance activity, electrophoretic mobility, and degradation by macrophages [12].
  • Modification of low density lipoproteins by human arterial smooth muscle cells was characterized by increased electrophoretic mobility and increased content of malondialdehyde-like oxidation products reactive with thiobarbituric acid [13].
  • Glucosylation of insoluble human tendon collagen, a protein with little or no turnover was determined by a thiobarbituric acid method in 23 subjects as a function of age and the presence or absence of diabetes [14].
 

Chemical compound and disease context of NSC4733

 

Biological context of NSC4733

 

Anatomical context of NSC4733

 

Associations of NSC4733 with other chemical compounds

 

Gene context of NSC4733

  • Mice heterozygous for disruption of the Lias gene develop normally, and their plasma levels of thiobarbituric acid-reactive substances do not differ from those of wild-type mice [35].
  • Acetylcholine caused eNOS activation in cells incubated with 10 microgram/ml oxLDL (10-15 thiobarbituric acid-reactive substances) and blocking antibodies to CD36, whereas cells treated with only oxLDL were unresponsive [36].
  • The inactivation of TFPI was strongly negatively correlated with both an increase in the net electrical charge of LDL (r = -.80, P < or = .0001) and with the production of thiobarbituric acid-reactive substances (r = -.78, P < or = .0001) and lipid peroxides (r = -.80, P < or = .0001) [37].
  • Indices of oxidative stress, including thiobarbituric acid reactive substance, carbonyl protein content, and HO activity, were determined [38].
  • Pretreatment with inhibitors of protein kinase C, phospholipase A2 or COX, LOX, COX-2 partially blocked KCN-induced formation of thiobarbituric acid reactive substance, whereas coincubation of L-NAME with the inhibitors decreased lipid peroxidation by 60 to 90% [39].
 

Analytical, diagnostic and therapeutic context of NSC4733

  • We suggest that patients who do not have an explanation for their elevated HbA1c should have GHb measured by the TBA method or affinity chromatography because hemoglobin electrophoresis does not identify this confounding artifact [40].
  • We determined plasma levels of fibrinogen (Clauss' method), coagulation factor VII:activity (clotting assay), factor VII antigen, protein C and S antigen, von Willebrand factor antigen, D-dimer concentration (ELISA), and lipid peroxide levels (thiobarbituric acid) in relation to urinary albumin excretion rate (RIA) [41].
  • Tissue contents of thiobarbituric acid-reactive substances did not increase during reperfusion in controls, but was reduced in group 4 (p < .004) [42].
  • The concentration of substances which react to thiobarbituric acid (TBARS) was measured as a marker of the degree of peroxidation using the HPLC method [43].
  • Plasma lipid peroxides were measured in venous blood as the adduct formed between thiobarbituric acid and malondialdehyde (MDA) using high performance liquid chromatography [44].

References

  1. Enhanced nonenzymatic glucosylation of human serum albumin in diabetes mellitus. Guthrow, C.E., Morris, M.A., Day, J.F., Thorpe, S.R., Baynes, J.W. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  2. Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K+. Al-Mehdi, A.B., Zhao, G., Dodia, C., Tozawa, K., Costa, K., Muzykantov, V., Ross, C., Blecha, F., Dinauer, M., Fisher, A.B. Circ. Res. (1998) [Pubmed]
  3. The role of active oxygen species and lipid peroxidation in the antitumor effect of hyperthermia. Yoshikawa, T., Kokura, S., Tainaka, K., Itani, K., Oyamada, H., Kaneko, T., Naito, Y., Kondo, M. Cancer Res. (1993) [Pubmed]
  4. Lipid peroxidation in rat AH-130 hepatoma cells enriched in vitro with arachidonic acid. Canuto, R.A., Muzio, G., Biocca, M.E., Dianzani, M.U. Cancer Res. (1991) [Pubmed]
  5. Photoactivation enhances the mitochondrial toxicity of the cationic rhodacyanine MKT-077. Modica-Napolitano, J.S., Brunelli, B.T., Koya, K., Chen, L.B. Cancer Res. (1998) [Pubmed]
  6. Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer's disease. Lovell, M.A., Ehmann, W.D., Butler, S.M., Markesbery, W.R. Neurology (1995) [Pubmed]
  7. Effects of aging and dementia on the levels of thiobarbituric-acid-reactive products stimulated by L-glutamic acid in human autopsy and biopsy brain tissue. Kristofiková, Z., Majer, E., Fales, E., Pĕkný, I., Klaschka, J. Dementia and geriatric cognitive disorders. (1998) [Pubmed]
  8. l-Deprenyl prevents lipid peroxidation and memory deficits produced by cerebral ischemia in rats. Maia, F.D., Pitombeira, B.S., Aráujo, D.T., Cunha, G.M., Viana, G.S. Cell. Mol. Neurobiol. (2004) [Pubmed]
  9. Modified determination of 2-thiobarbituric acid value in fats and oils. Pokorný, J., Valentová, H., Davídek, J. Die Nahrung. (1985) [Pubmed]
  10. Dietary probucol preserves endothelial function in cholesterol-fed rabbits by limiting vascular oxidative stress and superoxide generation. Keaney, J.F., Xu, A., Cunningham, D., Jackson, T., Frei, B., Vita, J.A. J. Clin. Invest. (1995) [Pubmed]
  11. Malondialdehyde-modified low density lipoproteins in patients with atherosclerotic disease. Holvoet, P., Perez, G., Zhao, Z., Brouwers, E., Bernar, H., Collen, D. J. Clin. Invest. (1995) [Pubmed]
  12. Preservation of the endogenous antioxidants in low density lipoprotein by ascorbate but not probucol during oxidative modification. Jialal, I., Grundy, S.M. J. Clin. Invest. (1991) [Pubmed]
  13. Iron and copper promote modification of low density lipoprotein by human arterial smooth muscle cells in culture. Heinecke, J.W., Rosen, H., Chait, A. J. Clin. Invest. (1984) [Pubmed]
  14. Glucosylation of human collagen in aging and diabetes mellitus. Schnider, S.L., Kohn, R.R. J. Clin. Invest. (1980) [Pubmed]
  15. Phase I clinical and pharmacological study of merbarone. Dimaggio, J.J., Warrell, R.P., Muindi, J., Stevens, Y.W., Lee, S.J., Lowenthal, D.A., Haines, I., Walsh, T.D., Baltzer, L., Yaldaei, S. Cancer Res. (1990) [Pubmed]
  16. Increased plasma lipid peroxidation in riboflavin-deficient, malaria-infected children. Das, B.S., Thurnham, D.I., Patnaik, J.K., Das, D.B., Satpathy, R., Bose, T.K. Am. J. Clin. Nutr. (1990) [Pubmed]
  17. Accumulation of aldehydic lipid peroxidation products during postanoxic reoxygenation of isolated rat hepatocytes. Grune, T., Siems, W.G., Schneider, W. Free Radic. Biol. Med. (1993) [Pubmed]
  18. Parameters related to oxygen free radicals in human skin: a study comparing healthy epidermis and skin cancer tissue. Nogués, M.R., Giralt, M., Cervelló, I., Del Castillo, D., Espeso, O., Argany, N., Aliaga, A., Mallol, J. J. Invest. Dermatol. (2002) [Pubmed]
  19. Effect of nitroheterocyclic drugs on lipid peroxidation and glutathione content in rat liver extracts. Dubin, M., Goijman, S.G., Stoppani, A.O. Biochem. Pharmacol. (1984) [Pubmed]
  20. Relationship of oxygen and glutathione in protection against carbon tetrachloride-induced hepatic microsomal lipid peroxidation and covalent binding in the rat. Rationale for the use of hyperbaric oxygen to treat carbon tetrachloride ingestion. Burk, R.F., Lane, J.M., Patel, K. J. Clin. Invest. (1984) [Pubmed]
  21. Impaired adaptive resynthesis and prolonged depletion of hepatic mitochondrial DNA after repeated alcohol binges in mice. Demeilliers, C., Maisonneuve, C., Grodet, A., Mansouri, A., Nguyen, R., Tinel, M., Lettéron, P., Degott, C., Feldmann, G., Pessayre, D., Fromenty, B. Gastroenterology (2002) [Pubmed]
  22. Cytokine gene expression by Kupffer cells in experimental alcoholic liver disease. Kamimura, S., Tsukamoto, H. Hepatology (1995) [Pubmed]
  23. Membrane potential of hepatic mitochondria after acute cocaine administration in rats--the role of mitochondrial reduced glutathione. Masini, A., Gallesi, D., Giovannini, F., Trenti, T., Ceccarelli, D. Hepatology (1997) [Pubmed]
  24. Enhancement of oxidative cell injury and antitumor effects of localized 44 degrees C hyperthermia upon combination with respiratory hyperoxia and xanthine oxidase. Frank, J., Kelleher, D.K., Pompella, A., Thews, O., Biesalski, H.K., Vaupel, P. Cancer Res. (1998) [Pubmed]
  25. Alterations in hepatocyte lysosomes in experimental hepatic copper overload in rats. Myers, B.M., Prendergast, F.G., Holman, R., Kuntz, S.M., Larusso, N.F. Gastroenterology (1993) [Pubmed]
  26. Oxidant injury to hepatic mitochondria in patients with Wilson's disease and Bedlington terriers with copper toxicosis. Sokol, R.J., Twedt, D., McKim, J.M., Devereaux, M.W., Karrer, F.M., Kam, I., von Steigman, G., Narkewicz, M.R., Bacon, B.R., Britton, R.S. Gastroenterology (1994) [Pubmed]
  27. Mammary cancer prevention by conjugated dienoic derivative of linoleic acid. Ip, C., Chin, S.F., Scimeca, J.A., Pariza, M.W. Cancer Res. (1991) [Pubmed]
  28. Stimulation of collagen gene expression by ascorbic acid in cultured human fibroblasts. A role for lipid peroxidation? Chojkier, M., Houglum, K., Solis-Herruzo, J., Brenner, D.A. J. Biol. Chem. (1989) [Pubmed]
  29. Serum levels of thiobarbituric acid reactive substances predict cardiovascular events in patients with stable coronary artery disease: a longitudinal analysis of the PREVENT study. Walter, M.F., Jacob, R.F., Jeffers, B., Ghadanfar, M.M., Preston, G.M., Buch, J., Mason, R.P. J. Am. Coll. Cardiol. (2004) [Pubmed]
  30. Polyunsaturated fatty acid-induced cytotoxicity against tumor cells and its relationship to lipid peroxidation. Bégin, M.E., Ells, G., Horrobin, D.F. J. Natl. Cancer Inst. (1988) [Pubmed]
  31. Glutathione redox pathway and reperfusion injury. Effect of N-acetylcysteine on infarct size and ventricular function. Forman, M.B., Puett, D.W., Cates, C.U., McCroskey, D.E., Beckman, J.K., Greene, H.L., Virmani, R. Circulation (1988) [Pubmed]
  32. Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Kita, T., Nagano, Y., Yokode, M., Ishii, K., Kume, N., Ooshima, A., Yoshida, H., Kawai, C. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  33. beta-Amyloid toxicity in organotypic hippocampal cultures: protection by EUK-8, a synthetic catalytic free radical scavenger. Bruce, A.J., Malfroy, B., Baudry, M. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  34. Ethanol-induced changes in hepatic free radical defense mechanisms and fatty-acid composition in the miniature pig. Zidenberg-Cherr, S., Olin, K.L., Villanueva, J., Tang, A., Phinney, S.D., Halsted, C.H., Keen, C.L. Hepatology (1991) [Pubmed]
  35. Endogenous production of lipoic acid is essential for mouse development. Yi, X., Maeda, N. Mol. Cell. Biol. (2005) [Pubmed]
  36. High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae. Uittenbogaard, A., Shaul, P.W., Yuhanna, I.S., Blair, A., Smart, E.J. J. Biol. Chem. (2000) [Pubmed]
  37. Tissue factor pathway inhibitor activity associated with LDL is inactivated by cell- and copper-mediated oxidation. Lesnik, P., Dentan, C., Vonica, A., Moreau, M., Chapman, M.J. Arterioscler. Thromb. Vasc. Biol. (1995) [Pubmed]
  38. Angiotensin II induces renal oxidant stress in vivo and heme oxygenase-1 in vivo and in vitro. Haugen, E.N., Croatt, A.J., Nath, K.A. Kidney Int. (2000) [Pubmed]
  39. Cyanide-induced generation of oxidative species: involvement of nitric oxide synthase and cyclooxygenase-2. Gunasekar, P.G., Borowitz, J.L., Isom, G.E. J. Pharmacol. Exp. Ther. (1998) [Pubmed]
  40. Hemoglobin South Florida. New variant with normal electrophoretic pattern mistaken for glycosylated hemoglobin. Shah, S.C., Malone, J.I., Boissel, J.P., Kasper, T.J. Diabetes (1986) [Pubmed]
  41. Thrombogenic factors are related to urinary albumin excretion rate in type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetic patients. Knöbl, P., Schernthaner, G., Schnack, C., Pietschmann, P., Griesmacher, A., Prager, R., Müller, M. Diabetologia (1993) [Pubmed]
  42. Effects of a novel, low-molecular weight inhibitor of lipid peroxidation on ischemia-reperfusion injury in isolated rat hearts and in cultured cardiomyocytes. Nagy, A., Valen, G., Ek, B., Sellei, P., Sjöquist, P.O., Vaage, J. Free Radic. Biol. Med. (1998) [Pubmed]
  43. Oxidative stress in Alzheimer patients in different stages of the disease. Zafrilla, P., Mulero, J., Xandri, J.M., Santo, E., Caravaca, G., Morillas, J.M. Current medicinal chemistry. (2006) [Pubmed]
  44. Breath pentane and plasma lipid peroxides in ischemic heart disease. Mendis, S., Sobotka, P.A., Leja, F.L., Euler, D.E. Free Radic. Biol. Med. (1995) [Pubmed]
 
WikiGenes - Universities