The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Roles of second-messenger systems and neuronal activity in the regulation of lordosis by neurotransmitters, neuropeptides, and estrogen: a review.

Many neurotransmitters and neuropeptides can affect the rodent feminine sexual behavior, lordosis, when administered in the ventromedial hypothalamus (VMH), midbrain central gray (MCG), or other brain regions. A survey of the electrophysiological and biochemical actions of these neural agents revealed that there is a very consistent association between lordosis facilitation with both the activation of the phosphoinositide (PI) pathway and the excitation of VMH and MCG neurons. In contrast, lordosis inhibition is associated, less consistently, with alterations of the adenylate cyclase (AC) system and the inhibition of neuronal activity. The findings that lordosis could be facilitated by going beyond membrane receptors and directly activating the PI pathway, suggest that this second-messenger pathway is a common mediator for the lordosis-facilitating agents. Furthermore, as in the case of stimulating membrane receptors, direct activation of this common mediator also requires estrogen priming for lordosis facilitation. Therefore, it is likely that the PI pathway is modulated by estrogen in the permissive action of estrogen priming. Indeed, a literature review shows that estrogen can affect selective isozymes of key enzyme families of the PI pathway at various levels. Such selective modulations, at several levels, could easily alter the course of a PI cascade; thence, the eventual functional outcome. These findings prompt us to propose that estrogen enables lordosis to be facilitated by a selective modulation of the PI pathway.[1]


WikiGenes - Universities