The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Phytanic acid must be activated to phytanoyl-CoA prior to its alpha-oxidation in rat liver peroxisomes.

alpha-Oxidation of the branched-chain fatty acid, phytanic acid, is defective in patients with Refsum's disease, the disorders of peroxisome biogenesis (e.g., Zellweger syndrome), and in rhizomelic chondrodysplasia punctata. 3H-Release from [2,3-3H]phytanic acid, which is impaired in cultured skin fibroblasts from these patients, was investigated in rat liver peroxisomes. Cofactors necessary for optimal 3H-release, ATP, Mg2+, and coenzyme A, were also necessary for optimal acyl-CoA synthetase activity, suggesting that the substrate for 3H-release might be phytanoyl-CoA. 5,8,11,14-Eicosatetraynoic acid (ETYA), an inhibitor of long-chain acyl-CoA synthetase activity, blocked phytanoyl-CoA synthesis as well as 3H-release from [2,3-3H]phytanic acid in a dose-dependent manner. However, this inhibitor had little effect on 3H-release from [2,3-3H]phytanoyl-CoA. Tetradecylglycidic acid (TDGA) inhibited 3H-release from [2,3-3H]phytanic acid in peroxisomal but not in mitochondrial fractions from rat liver. This agent inhibited 3H-release from [2,3-3H]phytanic acid and [2,3-3H]phytanoyl-CoA equally. In contrast to ETYA, which appeared to decrease 3H-release as a consequence of synthetase inhibition, TDGA appeared to act directly on the enzyme catalyzing 3H-release. This enzyme was partially purified from rat liver. The purified enzyme, which did not possess phytanoyl-CoA synthetase activity, catalyzed tritium release from [2,3-3H]phytanoyl-CoA. This enzyme catalyzed 3H-release from [2,3-3H]phytanic acid only if a source of phytanoyl-CoA synthetase was present. We conclude that in rat liver peroxisomes, phytanic acid must be activated to its coenzyme A derivative prior to subsequent alpha-oxidation.[1]

References

  1. Phytanic acid must be activated to phytanoyl-CoA prior to its alpha-oxidation in rat liver peroxisomes. Watkins, P.A., Howard, A.E., Mihalik, S.J. Biochim. Biophys. Acta (1994) [Pubmed]
 
WikiGenes - Universities