The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

PHYTANIC ACID     3,7,11,15- tetramethylhexadecanoic acid

Synonyms: Phytanate, Phytanoate, AG-B-43263, CHEBI:16285, P4060_SIGMA, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of PHYTANIC ACID


High impact information on PHYTANIC ACID


Chemical compound and disease context of PHYTANIC ACID


Biological context of PHYTANIC ACID


Anatomical context of PHYTANIC ACID

  • The dialysis of endoplasmic reticulum, mitochondrial, and peroxisomal fractions from human liver and cultured skin fibroblasts for 2 h against isotonic solution increased the specific activity of phytanic acid oxidation by 1.3-, 1.3-, and 5-21-fold, respectively, after removal of Nycodenz as compared with nondialyzed samples [19].
  • The results reported indicate that phytanic acid, the fatty acid which can be initially degraded by alpha-oxidation due to the presence of a beta-methyl group in the molecule, cannot be transported across the mitochondrial membranes [20].
  • We also observed that Nycodenz (commonly used gradient material for isolation of subcellular organelles) has a strong inhibitory effect on the alpha-oxidation of phytanic acid [19].
  • Therefore, phytanic acid (most common dietary branched-chain fatty acid) was chosen to address these issues in cultured primary hepatocytes isolated from livers of L-FABP gene-ablated (-/-) and wild type (+/+) mice [17].
  • To elucidate the pathogenic mechanism, we investigated the influence of phytanic acid on cellular physiology of rat hippocampal astrocytes [21].

Associations of PHYTANIC ACID with other chemical compounds


Gene context of PHYTANIC ACID

  • Biochemically Pex7(-/-) mice display the abnormalities related to a Pex7 deficiency, i.e. a severe depletion of plasmalogens, impaired alpha-oxidation of phytanic acid and impaired beta-oxidation of very-long-chain fatty acids [25].
  • We conclude that phytanic acid can be considered as a bona fide physiological ligand of murine PPARalpha [5].
  • In addition, diminished peroxisomal alpha-oxidation of phytanic acid (3,7,11, 15-tetramethylhexadecanoic acid) in these null mice was attributed to the absence of SCP2 which has a number of properties supporting a function as carrier for fatty acyl-CoAs rather than for sterols [26].
  • Here we show first that phytanic acid binds to recombinant L-FABP with high affinity [27].
  • The results explain the phytanic acid accumulation in the SCP-2-deficient mouse model and suggest that some of the common symptoms of ARD and other peroxisomal diseases may arise in part due to defects in SCP-2 function caused by increased phytanic acid levels [28].

Analytical, diagnostic and therapeutic context of PHYTANIC ACID


  1. Identification of PAHX, a Refsum disease gene. Mihalik, S.J., Morrell, J.C., Kim, D., Sacksteder, K.A., Watkins, P.A., Gould, S.J. Nat. Genet. (1997) [Pubmed]
  2. Rhizomelic chondrodysplasia punctata. Deficiency of 3-oxoacyl-coenzyme A thiolase in peroxisomes and impaired processing of the enzyme. Heikoop, J.C., van Roermund, C.W., Just, W.W., Ofman, R., Schutgens, R.B., Heymans, H.S., Wanders, R.J., Tager, J.M. J. Clin. Invest. (1990) [Pubmed]
  3. Peroxisomal disorders: genotype, phenotype, major neuropathologic lesions, and pathogenesis. Powers, J.M., Moser, H.W. Brain Pathol. (1998) [Pubmed]
  4. Structure of human phytanoyl-CoA 2-hydroxylase identifies molecular mechanisms of Refsum disease. McDonough, M.A., Kavanagh, K.L., Butler, D., Searls, T., Oppermann, U., Schofield, C.J. J. Biol. Chem. (2005) [Pubmed]
  5. Phytanic acid activates the peroxisome proliferator-activated receptor alpha (PPARalpha) in sterol carrier protein 2-/ sterol carrier protein x-deficient mice. Ellinghaus, P., Wolfrum, C., Assmann, G., Spener, F., Seedorf, U. J. Biol. Chem. (1999) [Pubmed]
  6. Refsum disease is caused by mutations in the phytanoyl-CoA hydroxylase gene. Jansen, G.A., Ofman, R., Ferdinandusse, S., Ijlst, L., Muijsers, A.O., Skjeldal, O.H., Stokke, O., Jakobs, C., Besley, G.T., Wraith, J.E., Wanders, R.J. Nat. Genet. (1997) [Pubmed]
  7. Defective peroxisomal catabolism of branched fatty acyl coenzyme A in mice lacking the sterol carrier protein-2/sterol carrier protein-x gene function. Seedorf, U., Raabe, M., Ellinghaus, P., Kannenberg, F., Fobker, M., Engel, T., Denis, S., Wouters, F., Wirtz, K.W., Wanders, R.J., Maeda, N., Assmann, G. Genes Dev. (1998) [Pubmed]
  8. Oxidation of pristanic acid in fibroblasts and its application to the diagnosis of peroxisomal beta-oxidation defects. Paton, B.C., Sharp, P.C., Crane, D.I., Poulos, A. J. Clin. Invest. (1996) [Pubmed]
  9. Metabolism of phytanic acid in Refsum's disease. Billimoria, J.D., Clemens, M.E., Gibberd, F.B., Whitelaw, M.N. Lancet (1982) [Pubmed]
  10. Identification of PEX7 as the second gene involved in Refsum disease. van den Brink, D.M., Brites, P., Haasjes, J., Wierzbicki, A.S., Mitchell, J., Lambert-Hamill, M., de Belleroche, J., Jansen, G.A., Waterham, H.R., Wanders, R.J. Am. J. Hum. Genet. (2003) [Pubmed]
  11. Characterization of the final step in the conversion of phytol into phytanic acid. van den Brink, D.M., van Miert, J.N., Dacremont, G., Rontani, J.F., Wanders, R.J. J. Biol. Chem. (2005) [Pubmed]
  12. Diagnosis of peroxisomal disorders by analysis of phytanic and pristanic acids in stored blood spots collected at neonatal screening. ten Brink, H.J., van den Heuvel, C.M., Christensen, E., Largillière, C., Jakobs, C. Clin. Chem. (1993) [Pubmed]
  13. In vivo study of phytanic acid alpha-oxidation in classic Refsum's disease and chondrodysplasia punctata. ten Brink, H.J., Schor, D.S., Kok, R.M., Stellaard, F., Kneer, J., Poll-The, B.T., Saudubray, J.M., Jakobs, C. Pediatr. Res. (1992) [Pubmed]
  14. Brain pyruvate and 2-oxoglutarate dehydrogenase complexes are mitochondrial targets of the CoA ester of the Refsum disease marker phytanic acid. Bunik, V.I., Raddatz, G., Wanders, R.J., Reiser, G. FEBS Lett. (2006) [Pubmed]
  15. Rhizomelic chondrodysplasia punctata: clinical, pathologic, and biochemical findings in two patients. Poulos, A., Sheffield, L., Sharp, P., Sherwood, G., Johnson, D., Beckman, K., Fellenberg, A.J., Wraith, J.E., Chow, C.W., Usher, S. J. Pediatr. (1988) [Pubmed]
  16. A fibroblast cell line defective in alkyl-dihydroxyacetone phosphate synthase: a novel defect in plasmalogen biosynthesis. Nagan, N., Hajra, A.K., Das, A.K., Moser, H.W., Moser, A., Lazarow, P., Purdue, P.E., Zoeller, R.A. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  17. Liver fatty acid-binding protein gene ablation inhibits branched-chain fatty acid metabolism in cultured primary hepatocytes. Atshaves, B.P., McIntosh, A.M., Lyuksyutova, O.I., Zipfel, W., Webb, W.W., Schroeder, F. J. Biol. Chem. (2004) [Pubmed]
  18. Rotenone-like action of the branched-chain phytanic acid induces oxidative stress in mitochondria. Schönfeld, P., Reiser, G. J. Biol. Chem. (2006) [Pubmed]
  19. Phytanic acid alpha-oxidation. Differential subcellular localization in rat and human tissues and its inhibition by nycodenz. Singh, I., Pahan, K., Dhaunsi, G.S., Lazo, O., Ozand, P. J. Biol. Chem. (1993) [Pubmed]
  20. Peroxisomal beta-oxidation of branched chain fatty acids in rat liver. Evidence that carnitine palmitoyltransferase I prevents transport of branched chain fatty acids into mitochondria. Singh, H., Beckman, K., Poulos, A. J. Biol. Chem. (1994) [Pubmed]
  21. The Refsum disease marker phytanic acid, a branched chain fatty acid, affects Ca2+ homeostasis and mitochondria, and reduces cell viability in rat hippocampal astrocytes. Kahlert, S., Schönfeld, P., Reiser, G. Neurobiol. Dis. (2005) [Pubmed]
  22. A new peroxisomal disorder with enlarged peroxisomes and a specific deficiency of acyl-CoA oxidase (pseudo-neonatal adrenoleukodystrophy). Poll-The, B.T., Roels, F., Ogier, H., Scotto, J., Vamecq, J., Schutgens, R.B., Wanders, R.J., van Roermund, C.W., van Wijland, M.J., Schram, A.W. Am. J. Hum. Genet. (1988) [Pubmed]
  23. Inactivation of the peroxisomal multifunctional protein-2 in mice impedes the degradation of not only 2-methyl-branched fatty acids and bile acid intermediates but also of very long chain fatty acids. Baes, M., Huyghe, S., Carmeliet, P., Declercq, P.E., Collen, D., Mannaerts, G.P., Van Veldhoven, P.P. J. Biol. Chem. (2000) [Pubmed]
  24. The human PICD gene encodes a cytoplasmic and peroxisomal NADP(+)-dependent isocitrate dehydrogenase. Geisbrecht, B.V., Gould, S.J. J. Biol. Chem. (1999) [Pubmed]
  25. Impaired neuronal migration and endochondral ossification in Pex7 knockout mice: a model for rhizomelic chondrodysplasia punctata. Brites, P., Motley, A.M., Gressens, P., Mooyer, P.A., Ploegaert, I., Everts, V., Evrard, P., Carmeliet, P., Dewerchin, M., Schoonjans, L., Duran, M., Waterham, H.R., Wanders, R.J., Baes, M. Hum. Mol. Genet. (2003) [Pubmed]
  26. Sterol carrier protein-2. Seedorf, U., Ellinghaus, P., Roch Nofer, J. Biochim. Biophys. Acta (2000) [Pubmed]
  27. Phytanic acid is ligand and transcriptional activator of murine liver fatty acid binding protein. Wolfrum, C., Ellinghaus, P., Fobker, M., Seedorf, U., Assmann, G., Börchers, T., Spener, F. J. Lipid Res. (1999) [Pubmed]
  28. Utilization of sterol carrier protein-2 by phytanoyl-CoA 2-hydroxylase in the peroxisomal alpha oxidation of phytanic acid. Mukherji, M., Kershaw, N.J., Schofield, C.J., Wierzbicki, A.S., Lloyd, M.D. Chem. Biol. (2002) [Pubmed]
  29. Renal involvement in Refsum's disease. Pabico, R.C., Gruebel, B.J., McKenna, B.A., Griggs, R.C., Hollander, J., Nusbacher, J., Panner, B.J. Am. J. Med. (1981) [Pubmed]
  30. Ratios for very-long-chain fatty acids in plasma of subjects with peroxisomal disorders, as determined by HPLC and validated by gas chromatography-mass spectrometry. Hall, N.A., Lynes, G.W., Hjelm, N.M. Clin. Chem. (1988) [Pubmed]
  31. Pristanic acid and phytanic acid in plasma from patients with peroxisomal disorders: stable isotope dilution analysis with electron capture negative ion mass fragmentography. ten Brink, H.J., Stellaard, F., van den Heuvel, C.M., Kok, R.M., Schor, D.S., Wanders, R.J., Jakobs, C. J. Lipid Res. (1992) [Pubmed]
  32. Serum levels of phytanic acid are associated with prostate cancer risk. Xu, J., Thornburg, T., Turner, A.R., Vitolins, M., Case, D., Shadle, J., Hinson, L., Sun, J., Liu, W., Chang, B., Adams, T.S., Zheng, S.L., Torti, F.M. Prostate (2005) [Pubmed]
  33. Plasma exchange in the treatment of Refsum's disease (heredopathia atactica polyneuritiformis). Harari, D., Gibberd, F.B., Dick, J.P., Sidey, M.C. J. Neurol. Neurosurg. Psychiatr. (1991) [Pubmed]
WikiGenes - Universities