The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Gain of function mutations for yeast calmodulin and calcium dependent regulation of protein kinase activity.

Yeast calmodulin binds only three calcium ions in the presence of millimolar concentrations of magnesium due to a defective calcium-binding sequence in its carboxyl terminal domain. Yeast calmodulin's diminished calcium-binding activity can be restored to that of other calmodulins by the use of site-directed mutagenesis to substitute its fourth calcium-binding domain with that of a vertebrate calmodulin sequence. However, the repair of yeast calmodulin's calcium-binding activity is not sufficient to repair quantitatively yeast calmodulin's defective protein kinase activator activity. Yeast calmodulin's activator activity with smooth muscle and skeletal muscle myosin light chain kinases and brain calmodulin-dependent protein kinase II can be progressively repaired by additional substitutions of vertebrate calmodulin sequences, provided that the four calcium-binding sites remain intact. An unexpected result obtained during the course of these studies was the observation that myosin light chain kinases from smooth and skeletal muscle tissues can respond differently to mutations in calmodulin. These and previous results indicate that the binding of four calcium ions by calmodulin is necessary but not sufficient to bring about quantitative activation of protein kinases, and are consistent with the conformational selection/restriction model of the dynamic equilibrium among calcium, calmodulin and each calmodulin regulated enzyme.[1]


  1. Gain of function mutations for yeast calmodulin and calcium dependent regulation of protein kinase activity. Lukas, T.J., Collinge, M., Haiech, J., Watterson, D.M. Biochim. Biophys. Acta (1994) [Pubmed]
WikiGenes - Universities