The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

CMD1  -  calmodulin

Saccharomyces cerevisiae S288c

Synonyms: CaM, Calmodulin, YBR0904, YBR109C
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of CMD1

 

High impact information on CMD1

 

Biological context of CMD1

 

Anatomical context of CMD1

 

Associations of CMD1 with chemical compounds

 

Physical interactions of CMD1

  • The Spc110p/Cmd1p complex has a small sedimentation coefficient (4.2 S) and a large Stokes radius (14.3 nm), indicative of an elongated structure [20].
  • Gel overlay assay shows that a mutant calmodulin with the F92A alteration has severely reduced binding affinity to a GST-Myo2p fusion protein [21].
  • Co-immunoprecipitation, two-hybrid and overlay assays demonstrated that Cmd1p interacts with Myo5p, a type I unconventional myosin [22].
  • Binding of centrins and yeast calmodulin to synthetic peptides corresponding to binding sites in the spindle pole body components Kar1p and Spc110p [23].
  • Calmodulin could bind to Myo1p through the IQ domain at the neck [24].
 

Enzymatic interactions of CMD1

  • A putative ubiquitin protein ligase (E3-CaM) which cooperates with UBC4 in selectively ubiquitinating calmodulin has been partially purified from Saccharomyces cerevisiae [25].
 

Regulatory relationships of CMD1

  • The temperature-sensitive growth of these cmd1 mutants was suppressed by a CaM-independent dominant allele of NUF1 [26].
  • Analysis of a collection of temperature-sensitive cmd1 mutants for their ability to suppress either the endocytic defect and/or the actin defect indicates that the two defects are tightly coupled [27].
  • Thus, overexpression of HCM1 enhances calmodulin function by an apparently indirect mechanism [28].
  • The cmdl-101 mutation expresses a carboxyl-terminal half of the yeast CaM (Met72-Cys147) under the control of an inducible GAL1 promoter [29].
  • An IQ motif (IQXXXRGXXXR, where X denotes any amino-acid) was required for Ca2 +-independent CaM complex formation and single amino-acid changes within this motif abrogated both AtBAG6-activated CaM-binding and cell death in yeast and plants [30].
 

Other interactions of CMD1

  • A mutation in Myo2p, an unconventional myosin that is a possible target of calmodulin, did not inhibit endocytosis [12].
  • Twentyfold overexpression of HCM1 permits strains carrying cmd1-1 to grow at temperatures up to and including 34 degrees C but does not suppress the lethality of either cmd1-1 at higher temperatures or the deletion of CMD1 [28].
  • The solubility of recombinant Spc110p in insect cells is improved by coexpression with yeast calmodulin (Cmd1p) [20].
  • The Tub4p complex binds Spc110p/Cmd1p via Spc98p and the K(d) for binding is 150 nM [20].
  • To analyze other components involved in actin organization through calmodulin, we isolated and characterized mutations that show synthetic lethal interaction with cmd1-226; these "cax" mutants fell into five complementation groups [21].
 

Analytical, diagnostic and therapeutic context of CMD1

References

  1. Protein A-calmodulin fusions: a novel approach for investigating calmodulin function in yeast. Stirling, D.A., Petrie, A., Pulford, D.J., Paterson, D.T., Stark, M.J. Mol. Microbiol. (1992) [Pubmed]
  2. Multiple Ca2+/calmodulin-dependent protein kinase genes in a unicellular eukaryote. Pausch, M.H., Kaim, D., Kunisawa, R., Admon, A., Thorner, J. EMBO J. (1991) [Pubmed]
  3. Characterization of trimethyllysine 115 in calmodulin by 14N and 13C NMR spectroscopy. Zhang, M., Huque, E., Vogel, H.J. J. Biol. Chem. (1994) [Pubmed]
  4. Nucleotide sequence of the Bacillus anthracis edema factor gene (cya): a calmodulin-dependent adenylate cyclase. Robertson, D.L., Tippetts, M.T., Leppla, S.H. Gene (1988) [Pubmed]
  5. Calcineurin: form and function. Rusnak, F., Mertz, P. Physiol. Rev. (2000) [Pubmed]
  6. Isolation of the yeast calmodulin gene: calmodulin is an essential protein. Davis, T.N., Urdea, M.S., Masiarz, F.R., Thorner, J. Cell (1986) [Pubmed]
  7. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Peters, C., Bayer, M.J., Bühler, S., Andersen, J.S., Mann, M., Mayer, A. Nature (2001) [Pubmed]
  8. Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Peters, C., Mayer, A. Nature (1998) [Pubmed]
  9. Gain-of-function mutations in a human calmodulin-like protein identify residues critical for calmodulin action in yeast. Harris, E., Yaswen, P., Thorner, J. Mol. Gen. Genet. (1995) [Pubmed]
  10. Identification and characterization of the KlCMD1 gene encoding Kluyveromyces lactis calmodulin. Rayner, T.F., Stark, M.J. Yeast (1998) [Pubmed]
  11. Molecular analysis of yeast chromosome II between CMD1 and LYS2: the excision repair gene RAD16 located in this region belongs to a novel group of double-finger proteins. Mannhaupt, G., Stucka, R., Ehnle, S., Vetter, I., Feldmann, H. Yeast (1992) [Pubmed]
  12. Calcium-independent calmodulin requirement for endocytosis in yeast. Kübler, E., Schimmöller, F., Riezman, H. EMBO J. (1994) [Pubmed]
  13. Structural Basis for the Interaction of the Myosin Light Chain Mlc1p with the Myosin V Myo2p IQ Motifs. Pennestri, M., Melino, S., Contessa, G.M., Casavola, E.C., Paci, M., Ragnini-Wilson, A., Cicero, D.O. J. Biol. Chem. (2007) [Pubmed]
  14. Saccharomyces cerevisiae Arc35p works through two genetically separable calmodulin functions to regulate the actin and tubulin cytoskeletons. Schaerer-Brodbeck, C., Riezman, H. J. Cell. Sci. (2000) [Pubmed]
  15. Diverse essential functions revealed by complementing yeast calmodulin mutants. Ohya, Y., Botstein, D. Science (1994) [Pubmed]
  16. A temperature-sensitive calmodulin mutant loses viability during mitosis. Davis, T.N. J. Cell Biol. (1992) [Pubmed]
  17. The unconventional myosin, Myo2p, is a calmodulin target at sites of cell growth in Saccharomyces cerevisiae. Brockerhoff, S.E., Stevens, R.C., Davis, T.N. J. Cell Biol. (1994) [Pubmed]
  18. Role of calmodulin and Spc110p interaction in the proper assembly of spindle pole body compenents. Sundberg, H.A., Goetsch, L., Byers, B., Davis, T.N. J. Cell Biol. (1996) [Pubmed]
  19. Association of calmodulin and an unconventional myosin with the contractile vacuole complex of Dictyostelium discoideum. Zhu, Q., Clarke, M. J. Cell Biol. (1992) [Pubmed]
  20. Reconstitution and characterization of budding yeast gamma-tubulin complex. Vinh, D.B., Kern, J.W., Hancock, W.O., Howard, J., Davis, T.N. Mol. Biol. Cell (2002) [Pubmed]
  21. Identification of functional connections between calmodulin and the yeast actin cytoskeleton. Sekiya-Kawasaki, M., Botstein, D., Ohya, Y. Genetics (1998) [Pubmed]
  22. Distinct functions of calmodulin are required for the uptake step of receptor-mediated endocytosis in yeast: the type I myosin Myo5p is one of the calmodulin targets. Geli, M.I., Wesp, A., Riezman, H. EMBO J. (1998) [Pubmed]
  23. Binding of centrins and yeast calmodulin to synthetic peptides corresponding to binding sites in the spindle pole body components Kar1p and Spc110p. Geier, B.M., Wiech, H., Schiebel, E. J. Biol. Chem. (1996) [Pubmed]
  24. Identification and functional analysis of the gene for type I myosin in fission yeast. Toya, M., Motegi, F., Nakano, K., Mabuchi, I., Yamamoto, M. Genes Cells (2001) [Pubmed]
  25. Selective ubiquitination of calmodulin by UBC4 and a putative ubiquitin protein ligase (E3) from Saccharomyces cerevisiae. Parag, H.A., Dimitrovsky, D., Raboy, B., Kulka, R.G. FEBS Lett. (1993) [Pubmed]
  26. A novel mechanism of intragenic complementation between Phe to Ala calmodulin mutations. Okano, H., Asakawa, M., Ohya, Y. J. Biochem. (2004) [Pubmed]
  27. Functional interactions between the p35 subunit of the Arp2/3 complex and calmodulin in yeast. Schaerer-Brodbeck, C., Riezman, H. Mol. Biol. Cell (2000) [Pubmed]
  28. A dosage-dependent suppressor of a temperature-sensitive calmodulin mutant encodes a protein related to the fork head family of DNA-binding proteins. Zhu, G., Muller, E.G., Amacher, S.L., Northrop, J.L., Davis, T.N. Mol. Cell. Biol. (1993) [Pubmed]
  29. Mutations in yeast calmodulin cause defects in spindle pole body functions and nuclear integrity. Sun, G.H., Hirata, A., Ohya, Y., Anraku, Y. J. Cell Biol. (1992) [Pubmed]
  30. AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Kang, C.H., Jung, W.Y., Kang, Y.H., Kim, J.Y., Kim, D.G., Jeong, J.C., Baek, D.W., Jin, J.B., Lee, J.Y., Kim, M.O., Chung, W.S., Mengiste, T., Koiwa, H., Kwak, S.S., Bahk, J.D., Lee, S.Y., Nam, J.S., Yun, D.J., Cho, M.J. Cell Death Differ. (2006) [Pubmed]
  31. Calmodulin concentrates at regions of cell growth in Saccharomyces cerevisiae. Brockerhoff, S.E., Davis, T.N. J. Cell Biol. (1992) [Pubmed]
  32. Inducible expression of calmodulin antisense RNA in Dictyostelium cells inhibits the completion of cytokinesis. Liu, T., Williams, J.G., Clarke, M. Mol. Biol. Cell (1992) [Pubmed]
 
WikiGenes - Universities