The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inhibition of endothelial cell proliferation by platelet factor-4 involves a unique action on S phase progression.

Modulation of endothelial cell proliferation and cell cycle progression by the "chemokine" platelet factor-4 ( PF-4) was investigated. PF-4 inhibited DNA synthesis, as well as proliferation of endothelial cells derived from large and small blood vessels. Inhibition by PF-4 was independent of the type and the concentration of stimuli used for the induction of endothelial cell proliferation. Inhibition of cell growth by PF-4 was reversible. The effects of PF-4 were antagonized by heparin. Cell cycle analysis using [3H]thymidine pulse labeling during traverse of synchronous cells from G0/G1 to S phase revealed that addition of PF-4 during G1 phase completely abolished the entry of cells into S phase. In addition, PF-4 also inhibited DNA synthesis in cells that were already in S phase. In exponentially growing cells, addition of PF-4 resulted in an accumulation of > 70% of the cells in early S phase, as determined by FACS (Becton-Dickinson Immunocytometry Systems, Mountain View, CA). In cells synchronized in S phase by hydroxyurea and then released, addition of PF-4 promptly blocked further progression of DNA synthesis. These results demonstrate that in G0/G1-arrested cells, PF-4 inhibited entry of endothelial cells into S phase. More strikingly, our studies have revealed a unique mode of endothelial cell growth inhibition whereby PF-4 effectively blocked cell cycle progression during S phase.[1]

References

 
WikiGenes - Universities