Mechanism of cAMP regulation of renin gene transcription by proximal promoter.
Renin is produced mainly by the kidney, and cAMP is a main positive regulator of its synthesis. This study was undertaken to analyze the molecular mechanism of cAMP-mediated regulation of Ren-1C gene transcription by the proximal promoter. We first showed that the promoter region from -365 to +16 of the mouse renin gene (Ren-1C) mediated the cAMP-induced chloramphenicol acetyltransferase gene expression in embryonic kidney-derived 293 cells. Deletion analysis and heterologous promoter assay disclosed that the proximal promoter region from -75 to +16 was able to activate chloramphenicol acetyltransferase expression by cAMP, and indicated that the proximal promoter element from -75 to -47 (RP-2 element) overlapping the TATA-like region was able to confer cAMP responsiveness. Electrophoretic mobility shift assay and DNase I footprinting analysis demonstrated that novel nuclear factors in 293 cells interacted with the RP-2 element, and that cAMP increased the binding activity of these nuclear factors to the RP-2 element. Furthermore, we demonstrated that cAMP enhanced the binding of nuclear factors derived from juxtaglomerular cells, the main production site of renin in the kidney, to the RP-2 element in vivo. These results suggest that the RP-2 element plays an important role in the cAMP-mediated regulation of Ren-1C gene transcription through the proximal promoter.[1]References
- Mechanism of cAMP regulation of renin gene transcription by proximal promoter. Tamura, K., Umemura, S., Yamaguchi, S., Iwamoto, T., Kobayashi, S., Fukamizu, A., Murakami, K., Ishii, M. J. Clin. Invest. (1994) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg