The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Electrophysiological and biochemical effects following single doses of organophosphates in the mouse.

Single doses of organophosphates (mipafox or ecothiopate) were given subcutaneously to mice. At intervals up to 77 days after dosing animals were killed and muscle action potentials and endplate potentials were recorded intracellularly in mouse phrenic-nerve/hemidiaphragm preparations. Activities of acetylcholinesterase and neuropathy target esterase in brain and acetylcholinesterase in diaphragm were also measured. Mipafox (0.11 mmol/kg), a neurotoxic organophosphate, produced an increase in prejunctional jitter (i.e. the variabilities of the latencies) of endplate potentials. This increase began 14-21 days after administration and lasted more than 23 days. No clinical signs of neuropathy were observed during this study. Mipafox also produced an increase in postjunctional (muscle action potential) jitter. Mipafox inhibited brain and diaphragm acetylcholinesterase and brain neuropathy target esterase. By comparison, a non-neurotoxic organophosphate, ecothiopate (0.5 mumol/kg), was a potent inhibitor of diaphragm acetylcholinesterase and produced a large increase in postjunctional jitter but ecothiopate did not inhibit brain neuropathy target esterase and had no effect on prejunctional jitter. Doses were chosen so that the inhibition of diaphragm acetylcholinesterase by each of the two organophosphates was similar. It is concluded that the neurotoxic organophosphate, mipafox, produced measurable changes in nerve function. These long-term changes may represent a new phenomenon, unrelated to the classical organophosphate induced delayed neuropathy. Alternatively, they may represent a neuropathic process which precedes or is below the threshold for clinical signs.[1]


  1. Electrophysiological and biochemical effects following single doses of organophosphates in the mouse. Kelly, S.S., Mutch, E., Williams, F.M., Blain, P.G. Arch. Toxicol. (1994) [Pubmed]
WikiGenes - Universities