The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Phrenic Nerve

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Phrenic Nerve

 

High impact information on Phrenic Nerve

  • We evaluated the contractile function of the diaphragm in well-nourished patients with stable COPD, using supramaximal, bilateral phrenic-nerve stimulation, which provides information about the strength and inspiratory action of the diaphragm [6].
  • In four subjects, pressure was also measured during stimulation of the phrenic nerve at various frequencies before and after diaphragmatic fatigue was produced by resistive breathing, with and without aminophylline infusion [7].
  • Moreover, morphological manifestations, such as loss of motor axons in the phrenic nerve and degeneration of facial motor neurons, were greatly reduced by CNTF, although the treatment did not start until the first symptoms of the disease had already become apparent and substantial degenerative changes were already present [8].
  • Release of acetylcholinesterase from rat hemidiaphragm preparations stimulated through the phrenic nerve [9].
  • CT-1-treated pmn mice showed a significantly reduced degeneration of facial motoneuron cytons and phrenic nerve myelinated axons [10].
 

Chemical compound and disease context of Phrenic Nerve

 

Biological context of Phrenic Nerve

 

Anatomical context of Phrenic Nerve

 

Associations of Phrenic Nerve with chemical compounds

  • Reflex effects of aerosolized histamine on phrenic nerve activity [26].
  • K, or electrical stimulation of the phrenic nerve, depletes both the vesicular and extravesicular pools of ACh when hemicholinium no [27].
  • Repeated doses of progesterone (from 0.1 to 2.0 micrograms/kg, cumulative) caused a sustained (greater than 45 min) facilitation of phrenic nerve activity in female and male cats; however, the response was much more variable in females [28].
  • The maximal response was obtained from the ventral part of RO and consisted of early and delayed excitatory responses that were of equal magnitude in both left and right C5 phrenic nerve roots [29].
  • There was no change in spontaneous phrenic nerve discharge in response to injections of equivalent or larger volumes of saline or lidocaine [30].
 

Gene context of Phrenic Nerve

  • The central band of acetylcholine receptor (AChR) clusters is also wider in Cdk5-/- diaphragms, together with the absence of S100 immunoreactivity along the phrenic nerve during late embryonic stages [31].
  • In mice lacking Phr1, the phrenic nerve failed to completely innervate the diaphragm [32].
  • Peptides derived from the luminal domain of synaptotagmin I and II are capable of blocking the neurotoxicity of BoNT/G in phrenic nerve preparations [33].
  • Unlike previous observations suggesting that a dying-back process may be occurring in the mouse model of the disease, we did not observe differences between proximal and distal axon loss in phrenic nerves of SOD1 rats [34].
  • Twitch tension of isolated phrenic nerve-diaphragm preparations elicited by electrical stimulations to the phrenic nerve was recorded isometrically, and the preparations were exposed to the purified enterotoxin [35].
 

Analytical, diagnostic and therapeutic context of Phrenic Nerve

References

  1. Unexpected right phrenic nerve injury during 5-fluorouracil continuous infusion plus cisplatin and vinorelbine in breast cancer patients. Munzone, E., Nolé, F., Orlando, L., Mandalá, M., Biffi, R., Ciano, C., Villa, G., Civelli, M., Goldhirsch, A. J. Natl. Cancer Inst. (2000) [Pubmed]
  2. Phrenic long-term facilitation requires NMDA receptors in the phrenic motonucleus in rats. McGuire, M., Zhang, Y., White, D.P., Ling, L. J. Physiol. (Lond.) (2005) [Pubmed]
  3. Excitatory amino acid-mediated chemoreflex excitation of respiratory neurones in rostral ventrolateral medulla in rats. Sun, M.K., Reis, D.J. J. Physiol. (Lond.) (1996) [Pubmed]
  4. Investigation of systemic bupivacaine toxicity using the in situ perfused working heart-brainstem preparation of the rat. Pickering, A.E., Waki, H., Headley, P.M., Paton, J.F. Anesthesiology (2002) [Pubmed]
  5. Serotonin(2) receptors mediate respiratory recovery after cervical spinal cord hemisection in adult rats. Zhou, S.Y., Basura, G.J., Goshgarian, H.G. J. Appl. Physiol. (2001) [Pubmed]
  6. Contractile properties of the human diaphragm during chronic hyperinflation. Similowski, T., Yan, S., Gauthier, A.P., Macklem, P.T., Bellemare, F. N. Engl. J. Med. (1991) [Pubmed]
  7. Aminophylline improves diaphragmatic contractility. Aubier, M., De Troyer, A., Sampson, M., Macklem, P.T., Roussos, C. N. Engl. J. Med. (1981) [Pubmed]
  8. Ciliary neurotrophic factor prevents degeneration of motor neurons in mouse mutant progressive motor neuronopathy. Sendtner, M., Schmalbruch, H., Stöckli, K.A., Carroll, P., Kreutzberg, G.W., Thoenen, H. Nature (1992) [Pubmed]
  9. Release of acetylcholinesterase from rat hemidiaphragm preparations stimulated through the phrenic nerve. Skau, K.A., Brimijoin, S. Nature (1978) [Pubmed]
  10. Adenoviral cardiotrophin-1 gene transfer protects pmn mice from progressive motor neuronopathy. Bordet, T., Schmalbruch, H., Pettmann, B., Hagege, A., Castelnau-Ptakhine, L., Kahn, A., Haase, G. J. Clin. Invest. (1999) [Pubmed]
  11. Dose-dependent effects of halothane on the phrenic nerve responses to acute hypoxia in vagotomized dogs. Stuth, E.A., Dogas, Z., Krolo, M., Kampine, J.P., Hopp, F.A., Zuperku, E.J. Anesthesiology (1997) [Pubmed]
  12. gamma-Aminobutyric acid receptors at the ventral surface of the medulla inhibit respiratory motor outflow to the laryngeal musculature. King, K.A., Holtman, J.R. Neuropharmacology (1989) [Pubmed]
  13. Phrenic nerve responses to hypoxia and CO2 in decerebrate dogs. Nielsen, A.M., Bisgard, G.E., Mitchell, G.S. Respiration physiology. (1986) [Pubmed]
  14. Vecuronium-induced depression of phrenic nerve activity during hypoxia in the rabbit. Wyon, N., Eriksson, L.I., Yamamoto, Y., Lindahl, S.G. Anesth. Analg. (1996) [Pubmed]
  15. Effects of cartap on isolated mouse phrenic nerve diaphragm and its related mechanism. Liao, J.W., Kang, J.J., Liu, S.H., Jeng, C.R., Cheng, Y.W., Hu, C.M., Tsai, S.F., Wang, S.C., Pang, V.F. Toxicol. Sci. (2000) [Pubmed]
  16. Turnover of the molecular forms of acetylcholinesterase in the rat diaphragm. Brimijoin, S., Carter, J. J. Neurochem. (1982) [Pubmed]
  17. Properties of presympathetic neurones in the rostral ventrolateral medulla in the rat: an intracellular study "in vivo'. Lipski, J., Kanjhan, R., Kruszewska, B., Rong, W. J. Physiol. (Lond.) (1996) [Pubmed]
  18. Stimulation of raphe (obscurus) nucleus causes long-term potentiation of phrenic nerve activity in cat. Millhorn, D.E. J. Physiol. (Lond.) (1986) [Pubmed]
  19. Effect of lung transplantation on diaphragmatic function in patients with chronic obstructive pulmonary disease. Wanke, T., Merkle, M., Formanek, D., Zifko, U., Wieselthaler, G., Zwick, H., Klepetko, W., Burghuber, O.C. Thorax (1994) [Pubmed]
  20. Microinjections of 5-HT1A agonists into the dorsal motor vagal nucleus produce a bradycardia in the atenolol-pretreated anaesthetized rat. Sporton, S.C., Shepheard, S.L., Jordan, D., Ramage, A.G. Br. J. Pharmacol. (1991) [Pubmed]
  21. Stimulation of the phrenic nerve as a complication of vagus nerve pacing in a patient with epilepsy. Leijten, F.S., Van Rijen, P.C. Neurology (1998) [Pubmed]
  22. Phrenic afferent input excites C1-C2 spinal neurons in rats. Razook, J.C., Chandler, M.J., Foreman, R.D. Pain (1995) [Pubmed]
  23. Long-term facilitation of inspiratory intercostal nerve activity following carotid sinus nerve stimulation in cats. Fregosi, R.F., Mitchell, G.S. J. Physiol. (Lond.) (1994) [Pubmed]
  24. Adenosinergic modulation of respiratory neurones and hypoxic responses in the anaesthetized cat. Schmidt, C., Bellingham, M.C., Richter, D.W. J. Physiol. (Lond.) (1995) [Pubmed]
  25. Evidence from motoneurone synchronization for disynaptic pathways in the control of inspiratory motoneurones in the cat. Vaughan, C.W., Kirkwood, P.A. J. Physiol. (Lond.) (1997) [Pubmed]
  26. Reflex effects of aerosolized histamine on phrenic nerve activity. Pack, A.I., Hertz, B.C., Ledlie, J.F., Fishman, A.P. J. Clin. Invest. (1982) [Pubmed]
  27. Acetylcholine compartments in mouse diaphragm. Comparison of the effects of black widow spider venom, electrical stimulation, and high concentrations of potassium. Gorio, A., Hurlbut, W.P., Ceccarelli, B. J. Cell Biol. (1978) [Pubmed]
  28. Progesterone stimulates respiration through a central nervous system steroid receptor-mediated mechanism in cat. Bayliss, D.A., Millhorn, D.E., Gallman, E.A., Cidlowski, J.A. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  29. Involvement of serotonin in the excitation of phrenic motoneurons evoked by stimulation of the raphe obscurus. Holtman, J.R., Dick, T.E., Berger, A.J. J. Neurosci. (1986) [Pubmed]
  30. Respiratory motoneuronal activity is altered by injections of picomoles of glutamate into cat brain stem. McCrimmon, D.R., Feldman, J.L., Speck, D.F. J. Neurosci. (1986) [Pubmed]
  31. Aberrant motor axon projection, acetylcholine receptor clustering, and neurotransmission in cyclin-dependent kinase 5 null mice. Fu, A.K., Ip, F.C., Fu, W.Y., Cheung, J., Wang, J.H., Yung, W.H., Ip, N.Y. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  32. Evidence for a conserved function in synapse formation reveals Phr1 as a candidate gene for respiratory failure in newborn mice. Burgess, R.W., Peterson, K.A., Johnson, M.J., Roix, J.J., Welsh, I.C., O'Brien, T.P. Mol. Cell. Biol. (2004) [Pubmed]
  33. Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G. Rummel, A., Karnath, T., Henke, T., Bigalke, H., Binz, T. J. Biol. Chem. (2004) [Pubmed]
  34. Degeneration of respiratory motor neurons in the SOD1 G93A transgenic rat model of ALS. Lladó, J., Haenggeli, C., Pardo, A., Wong, V., Benson, L., Coccia, C., Rothstein, J.D., Shefner, J.M., Maragakis, N.J. Neurobiol. Dis. (2006) [Pubmed]
  35. Inhibition of neuromuscular transmission in isolated mouse phrenic nerve-diaphragm by the enterotoxin of Clostridium perfringens type A. Sugimoto, N., Miyamoto, A., Horiguchi, Y., Okabe, T., Matsuda, M. Toxicon (1992) [Pubmed]
  36. Mechanical ventilation increases substance P concentration in the vagus, sympathetic, and phrenic nerves. Balzamo, E., Joanny, P., Steinberg, J.G., Oliver, C., Jammes, Y. Am. J. Respir. Crit. Care Med. (1996) [Pubmed]
  37. Central CO2 chemoreception: a mechanism involving P2 purinoceptors localized in the ventrolateral medulla of the anaesthetized rat. Thomas, T., Ralevic, V., Gadd, C.A., Spyer, K.M. J. Physiol. (Lond.) (1999) [Pubmed]
  38. Putative cerebral cortical involvement in the ventilatory response to inhaled CO2 in conscious man. Murphy, K., Mier, A., Adams, L., Guz, A. J. Physiol. (Lond.) (1990) [Pubmed]
  39. The effects of ketamine on renal sympathetic nerve activity and phrenic nerve activity in rabbits (with vagotomy) with and without afferent inputs from peripheral receptors. Sasao, J., Taneyama, C., Kohno, N., Goto, H. Anesth. Analg. (1996) [Pubmed]
 
WikiGenes - Universities