Evidence from studies with hepatocyte suspensions that store-operated Ca2+ inflow requires a pertussis toxin-sensitive trimeric G-protein.
The role of heterotrimeric GTP-binding proteins in the process of store-operated Ca2+ inflow in hepatocytes was investigated by testing the ability of pertussis toxin to inhibit thapsigargin- and 2,5-di-tert-butylhydroquinone (DBHQ)-induced bivalent cation inflow. Hepatocytes isolated from rats treated with pertussis toxin for 24 h exhibited markedly inhibited rates of both Ca2+ and Mn2+ inflow when these were stimulated by vasopressin, angiotension II, epidermal growth factor, thapsigargin and DBHQ. Pertussis toxin had little effect on the basal intracellular free Ca2+ concentration ([Ca2+]i), basal rates of Ca2+ and Mn2+ inflow, the abilities of vasopressin, angiotensin II, thapsigargin and DBHQ to induce the release of Ca2+ from intracellular stores, and the maximum value of [Ca2+]i reached following agonist-induced release of Ca2+ from intracellular stores. It is concluded that store-operated Ca2+ inflow in hepatocytes employs a slowly ADP-ribosylated trimeric GTP-binding protein and is the physiological mechanism, or one of the physiological mechanisms, by which vasopressin and angiotensin stimulate plasma membrane Ca2+ inflow in this cell type.[1]References
- Evidence from studies with hepatocyte suspensions that store-operated Ca2+ inflow requires a pertussis toxin-sensitive trimeric G-protein. Fernando, K.C., Barritt, G.J. Biochem. J. (1994) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg