The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The strengthening mechanism of a magnesia core ceramic.

A high-expansion core material containing magnesia and forsterite may be used to make all-ceramic dental crowns with porcelain-fused-to-metal body porcelains. The purpose of this study was to investigate the strengthening mechanism for the magnesia core material. Six batches of the magnesia core material were made by reacting magnesia with a silica glass with holding times ranging from 17 to 120 min. The flexural strength was measured using three-point loading according to the ISO specification for dental ceramics. The forsterite content was measured using quantitative x-ray diffraction. A statistically significant correlation was found between the forsterite content and flexural strength. The proposed mechanism for strengthening is the precipitation of fine forsterite crystals in the glass matrix surrounding unreacted magnesia. Longer reaction times produced more dissolution of magnesia and subsequent precipitation of forsterite. This method results in a new strengthening mechanism for dental ceramics which have previously relied on the incorporation of alumina, leucite or ceramic whiskers.[1]


  1. The strengthening mechanism of a magnesia core ceramic. O'Brien, W.J., Groh, C.L., Boenke, K.M., Mora, G.P., Tien, T.Y. Dental materials : official publication of the Academy of Dental Materials. (1993) [Pubmed]
WikiGenes - Universities