Fitness, flux and phantoms in temporally variable environments.
The evolutionary problem of selection in temporally variable environments is addressed by investigating a metabolic model describing the approach to steady state of a flux emanating from a simple linear pathway of unsaturated enzymes catalyzing reversible monomolecular reactions. Analysis confirms previous claims that steps having no influence on the steady state flux may influence transient behavior, and that enzymes immune to natural selection at steady state may become subject to selection when fitness is a function of individual transient metabolic events. Indeed, calculations show that the beta-galactosidase of Escherichia coli, which exerts a negligible effect on the steady state lactose flux, controls the approach to steady state. However, after 6 sec the lactose flux is within 0.1% of steady state, and so an ever changing environment must be invoked to continually expose beta-galactosidase to selection. Analysis of the metabolic model undergoing multiple transient events reveals that fitness differences remain unaffected if enzyme activities remain constant and become minimized if enzyme activities differ among environments. Until suitable data become available, claims that metabolic behavior away from steady state necessarily exposes a far greater proportion of allozymes to natural selection should be treated with great skepticism.[1]References
- Fitness, flux and phantoms in temporally variable environments. Dean, A.M. Genetics (1994) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg