The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

An FCCP-sensitive Ca2+ store in bullfrog sympathetic neurons and its participation in stimulus-evoked changes in [Ca2+]i.

This study describes a Ca2+ store in fura-2-loaded bullfrog sympathetic neurons that modulates [Ca2+]i responses elicited by either depolarization or Ca2+ release from a caffeine- and ryanodine-sensitive store. This store is insensitive to caffeine and ryanodine, but is sensitive to the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). The FCCP-sensitive store slows both the rise in [Ca2+]i during stimulation (apparently by accumulating Ca2+ from the cytosol) and the recovery following stimulation (by releasing the accumulated Ca2+ into the cytosol). For a fixed level of depolarization, recovery is slowed to an extent that depends on stimulus duration. [Ca2+]i imaging shows that these effects are prominent in the soma but not in growth cones. Ca2+ uptake by the FCCP-sensitive store appears to be strongly [Ca2+]i dependent, since it becomes influential only when [Ca2+]i approaches approximately 500 nM. Therefore, this store may specifically influence [Ca2+]i during moderate and strong stimulation. The effect of the store on responses to depolarization can be accounted for by a simple three-compartment scheme consisting of the extracellular medium, the cytosol, and a single internal store with a [Ca2+]i-dependent uptake mechanism resembling the mitochondrial Ca2+ uniporter. The store's effect on responses to caffeine-induced Ca2+ release can be accounted for by including a second internal compartment to represent the caffeine-sensitive store. While the identity of the FCCP-sensitive store is unknown, its sensitivity to FCCP is consistent with a mitochondrial pool. It is suggested that by modulating the temporal properties of [Ca2+]i following stimulation, the FCCP-sensitive store may influence the degree of activation of intracellular [Ca2+]i-dependent processes.[1]

References

 
WikiGenes - Universities