The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Growth Cones

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Growth Cones

 

Psychiatry related information on Growth Cones

  • We propose that profilin may act by forming, during the critical period of cerebellar development, a reserve pool of monomeric actin that can easily be mobilized in cell regions such as growth cones or synaptic junctions where filamentous actin is highly concentrated [6].
  • Static and dynamic views of retinal growth cones in this decision region reveal that extensive exploratory behavior and selective retraction of parts of the growing tips of uncrossed fibers, in response to cellular cues at the midline, is a major event in the guidance of these fibers [7].
 

High impact information on Growth Cones

  • Eph receptors transduce short-range repulsive signals for axon guidance by modulating actin dynamics within growth cones [8].
  • In addition, expression of a mutant form of ephexin in primary neurons interferes with ephrin-A-induced growth cone collapse [8].
  • EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin [8].
  • We propose that distinct signals transduced via Trio and Dock act combinatorially to activate Pak in spatially restricted domains within the growth cone, thereby controlling the direction of axon extension [9].
  • Previous studies suggested that Roundabout (Robo) is a repulsive guidance receptor on growth cones that binds to an unknown midline ligand [10].
 

Chemical compound and disease context of Growth Cones

 

Biological context of Growth Cones

  • Ligand binding to an Eph receptor results in tyrosine phosphorylation of the kinase domain, and repulsion of axonal growth cones and migrating cells [16].
  • Eph receptor tyrosine kinases and their corresponding surface-bound ligands, the ephrins, provide cues to the migration of cells and growth cones during embryonic development [17].
  • The results suggest that cell adhesion molecules transduce cell surface events to intracellular signals by modulating the activity of protein tyrosine kinases or phosphatases in axonal membranes to influence cytoskeletal dynamics at the growth cone [18].
  • Furthermore, expression of dominant-negative CRMP-2 mutants or knockdown of CRMP-2 message with small-interfering (si) RNA inhibited endocytosis of L1 at axonal growth cones and suppressed axon growth [19].
  • Here, genetic analysis in Drosophila is used to demonstrate that mutations in Profilin (chickadee) and Abl (abl) display an identical growth cone arrest phenotype for axons of intersegmental nerve b (ISNb) [20].
 

Anatomical context of Growth Cones

 

Associations of Growth Cones with chemical compounds

  • A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion [26].
  • Using diffusing latex beads to monitor membrane flow, we find that axonal membrane flows rapidly (7 microns/min) from growth cone to cell body during axon growth and that flow is inhibited by brefeldin A [27].
  • Serotonin-containing cell charged with growth cone arrests [28].
  • The growth cone response depends on the activation of neuronal nicotinic ACh receptors, requires the presence of extracellular Ca2+, and appears to be mediated by Ca(2+)-calmodulin-dependent protein kinase II [29].
  • These results indicate that integrin regulation maintains neuronal growth-cone motility over a broad range of ligand concentrations, allowing axons to invade different tissues during development and regeneration [30].
 

Gene context of Growth Cones

  • Genetic analysis of growth cone guidance in Drosophila: fasciclin II functions as a neuronal recognition molecule [31].
  • The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules [32].
  • The ubiquitin ligase Rnf6 regulates local LIM kinase 1 levels in axonal growth cones [2].
  • Genetic interactions between unc-130 and other guidance genes show that several molecular pathways function in parallel to guide the ventral to dorsal migration of distal tip cells (DTCs) and axonal growth cones in C. elegans [33].
  • Moreover, by monitoring the trafficking of a Robo-green fluorescent protein (GFP) fusion in living embryos, we demonstrate that Comm prevents the delivery of Robo-GFP to the growth cone, as predicted by the sorting model [34].
 

Analytical, diagnostic and therapeutic context of Growth Cones

References

  1. Function of myosin-V in filopodial extension of neuronal growth cones. Wang, F.S., Wolenski, J.S., Cheney, R.E., Mooseker, M.S., Jay, D.G. Science (1996) [Pubmed]
  2. The ubiquitin ligase Rnf6 regulates local LIM kinase 1 levels in axonal growth cones. Tursun, B., Schlüter, A., Peters, M.A., Viehweger, B., Ostendorff, H.P., Soosairajah, J., Drung, A., Bossenz, M., Johnsen, S.A., Schweizer, M., Bernard, O., Bach, I. Genes Dev. (2005) [Pubmed]
  3. Pertussis toxin specifically inhibits growth cone guidance by a mechanism independent of direct G protein inactivation. Kindt, R.M., Lander, A.D. Neuron (1995) [Pubmed]
  4. Cell adhesion molecules NgCAM and axonin-1 form heterodimers in the neuronal membrane and cooperate in neurite outgrowth promotion. Buchstaller, A., Kunz, S., Berger, P., Kunz, B., Ziegler, U., Rader, C., Sonderegger, P. J. Cell Biol. (1996) [Pubmed]
  5. Growth cone collapse and inhibition of neurite growth by Botulinum neurotoxin C1: a t-SNARE is involved in axonal growth. Igarashi, M., Kozaki, S., Terakawa, S., Kawano, S., Ide, C., Komiya, Y. J. Cell Biol. (1996) [Pubmed]
  6. Profilin and profilin mRNA in the cerebellum of the developing rat. Léna, J.Y., Sri Widada, J., Ferraz, C., Liautard, J.P., Rabié, A., Faivre-Sarrailh, C. Neuroreport (1991) [Pubmed]
  7. Guidance of retinal fibers in the optic chiasm. Godement, P., Mason, C.A. Perspectives on developmental neurobiology. (1993) [Pubmed]
  8. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Shamah, S.M., Lin, M.Z., Goldberg, J.L., Estrach, S., Sahin, M., Hu, L., Bazalakova, M., Neve, R.L., Corfas, G., Debant, A., Greenberg, M.E. Cell (2001) [Pubmed]
  9. Trio combines with dock to regulate Pak activity during photoreceptor axon pathfinding in Drosophila. Newsome, T.P., Schmidt, S., Dietzl, G., Keleman, K., Asling, B., Debant, A., Dickson, B.J. Cell (2000) [Pubmed]
  10. Slit is the midline repellent for the robo receptor in Drosophila. Kidd, T., Bland, K.S., Goodman, C.S. Cell (1999) [Pubmed]
  11. Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. Wahl, S., Barth, H., Ciossek, T., Aktories, K., Mueller, B.K. J. Cell Biol. (2000) [Pubmed]
  12. Bradykinin-induced collapse of rat pheochromocytoma (PC12) cell growth cones: a role for tyrosine kinase activity. Schindelholz, B., Reber, B.F. J. Neurosci. (1997) [Pubmed]
  13. FAK and Src kinases are required for netrin-induced tyrosine phosphorylation of UNC5. Li, W., Aurandt, J., Jürgense, C., Rao, Y., Guan, K.L. J. Cell. Sci. (2006) [Pubmed]
  14. Glycogen synthase kinase 3beta phosphorylation of microtubule-associated protein 1B regulates the stability of microtubules in growth cones. Goold, R.G., Owen, R., Gordon-Weeks, P.R. J. Cell. Sci. (1999) [Pubmed]
  15. Selective changes in cell bodies and growth cones of nerve growth factor-differentiated PC12 cells induced by chemical hypoxia. Gibson, G., Toral-Barza, L., Zhang, H. J. Neurochem. (1997) [Pubmed]
  16. Regulation of repulsion versus adhesion by different splice forms of an Eph receptor. Holmberg, J., Clarke, D.L., Frisén, J. Nature (2000) [Pubmed]
  17. Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion. Davy, A., Gale, N.W., Murray, E.W., Klinghoffer, R.A., Soriano, P., Feuerstein, C., Robbins, S.M. Genes Dev. (1999) [Pubmed]
  18. Neural cell adhesion molecules modulate tyrosine phosphorylation of tubulin in nerve growth cone membranes. Atashi, J.R., Klinz, S.G., Ingraham, C.A., Matten, W.T., Schachner, M., Maness, P.F. Neuron (1992) [Pubmed]
  19. CRMP-2 regulates polarized Numb-mediated endocytosis for axon growth. Nishimura, T., Fukata, Y., Kato, K., Yamaguchi, T., Matsuura, Y., Kamiguchi, H., Kaibuchi, K. Nat. Cell Biol. (2003) [Pubmed]
  20. Profilin and the Abl tyrosine kinase are required for motor axon outgrowth in the Drosophila embryo. Wills, Z., Marr, L., Zinn, K., Goodman, C.S., Van Vactor, D. Neuron (1999) [Pubmed]
  21. Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors. Takahashi, T., Fournier, A., Nakamura, F., Wang, L.H., Murakami, Y., Kalb, R.G., Fujisawa, H., Strittmatter, S.M. Cell (1999) [Pubmed]
  22. UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Chan, S.S., Zheng, H., Su, M.W., Wilk, R., Killeen, M.T., Hedgecock, E.M., Culotti, J.G. Cell (1996) [Pubmed]
  23. Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Osen-Sand, A., Catsicas, M., Staple, J.K., Jones, K.A., Ayala, G., Knowles, J., Grenningloh, G., Catsicas, S. Nature (1993) [Pubmed]
  24. Asymmetric retraction of growth cone filopodia following focal inactivation of calcineurin. Chang, H.Y., Takei, K., Sydor, A.M., Born, T., Rusnak, F., Jay, D.G. Nature (1995) [Pubmed]
  25. HDAC6 is a microtubule-associated deacetylase. Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Wang, X.F., Yao, T.P. Nature (2002) [Pubmed]
  26. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Hong, K., Hinck, L., Nishiyama, M., Poo, M.M., Tessier-Lavigne, M., Stein, E. Cell (1999) [Pubmed]
  27. Axon membrane flows from the growth cone to the cell body. Dai, J., Sheetz, M.P. Cell (1995) [Pubmed]
  28. Serotonin-containing cell charged with growth cone arrests. Meinertzhagen, I.A. Nature (1985) [Pubmed]
  29. Turning of nerve growth cones induced by neurotransmitters. Zheng, J.Q., Felder, M., Connor, J.A., Poo, M.M. Nature (1994) [Pubmed]
  30. Ligand-induced changes in integrin expression regulate neuronal adhesion and neurite outgrowth. Condic, M.L., Letourneau, P.C. Nature (1997) [Pubmed]
  31. Genetic analysis of growth cone guidance in Drosophila: fasciclin II functions as a neuronal recognition molecule. Grenningloh, G., Rehm, E.J., Goodman, C.S. Cell (1991) [Pubmed]
  32. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Kolodkin, A.L., Matthes, D.J., Goodman, C.S. Cell (1993) [Pubmed]
  33. The forkhead transcription factor UNC-130 is required for the graded spatial expression of the UNC-129 TGF-beta guidance factor in C. elegans. Nash, B., Colavita, A., Zheng, H., Roy, P.J., Culotti, J.G. Genes Dev. (2000) [Pubmed]
  34. Comm function in commissural axon guidance: cell-autonomous sorting of Robo in vivo. Keleman, K., Ribeiro, C., Dickson, B.J. Nat. Neurosci. (2005) [Pubmed]
  35. A membrane-targeting signal in the amino terminus of the neuronal protein GAP-43. Zuber, M.X., Strittmatter, S.M., Fishman, M.C. Nature (1989) [Pubmed]
  36. Polarized compartmentalization of organelles in growth cones from developing optic tectum. Cheng, T.P., Reese, T.S. J. Cell Biol. (1985) [Pubmed]
  37. SPG3A protein atlastin-1 is enriched in growth cones and promotes axon elongation during neuronal development. Zhu, P.P., Soderblom, C., Tao-Cheng, J.H., Stadler, J., Blackstone, C. Hum. Mol. Genet. (2006) [Pubmed]
  38. The cell adhesion molecule NrCAM is crucial for growth cone behaviour and pathfinding of retinal ganglion cell axons. Zelina, P., Avci, H.X., Thelen, K., Pollerberg, G.E. Development (2005) [Pubmed]
  39. TOAD-64, a gene expressed early in neuronal differentiation in the rat, is related to unc-33, a C. elegans gene involved in axon outgrowth. Minturn, J.E., Fryer, H.J., Geschwind, D.H., Hockfield, S. J. Neurosci. (1995) [Pubmed]
 
WikiGenes - Universities