The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The effect of cortisol on glucose/glucose-6-phosphate cycle activity and insulin action.

Increased glucose/glucose-6-phosphate (G/G6P) substrate cycle activity may be an early marker of disordered hepatic glucose metabolism. To investigate the effects of glucocorticoids on G/G6P cycle activity and insulin resistance, we studied eight normal subjects using the euglycemic glucose clamp technique with high pressure liquid chromatography-purified [2(3)H]- and [6-3H]glucose tracers at insulin infusion rates of 0.4 and 2.0 mU/kg.min after 24-h cortisol (2 micrograms/kg.min) and saline infusions. Endogenous glucose production ([6-3H]glucose) was greater after cortisol than saline in the postabsorptive state (13.3 +/- 0.5 vs. 12.2 +/- 0.5 mumol/kg.min; P < 0.05) and during 0.4-mU insulin infusion (10.5 +/- 0.7 vs. 5.0 +/- 0.8 mumol/kg.min; P < 0.005). During 2.0-mU insulin infusion, endogenous glucose production was suppressed similarly (5.1 +/- 0.4 vs. 4.1 +/- 0.5 mumol/kg.min), but glucose disappearance was less after cortisol than saline (38.7 +/- 3.5 vs. 64.6 +/- 4.3 mumol/kg.min; P < 0.001). G/G6P cycle activity after cortisol and saline was similar in the postabsorptive state and during 0.4 mU insulin. During 2.0 mU insulin, cycle activity was greater after cortisol than saline (3.6 +/- 0.9 vs. 0.8 +/- 0.5 mumol/kg.min; P < 0.005). In conclusion, cortisol induces hepatic insulin resistance without significantly changing G/G6P cycle activity. At high glucose turnover rates, G/G6P cycle activity is increased by cortisol; however, reduced glucose disappearance is the main cause of impaired insulin action.[1]

References

  1. The effect of cortisol on glucose/glucose-6-phosphate cycle activity and insulin action. Rooney, D.P., Neely, R.D., Cullen, C., Ennis, C.N., Sheridan, B., Atkinson, A.B., Trimble, E.R., Bell, P.M. J. Clin. Endocrinol. Metab. (1993) [Pubmed]
 
WikiGenes - Universities