The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Intracellular pH recovery during respiratory acidosis in perfused hearts.

Na(+)-H+ exchange and Na(+)-dependent HCO3- influx both contribute to recovery of intracellular pH (pHi) after an acidosis induced by using the NH4Cl prepulse technique in mammalian and avian cardiac tissue. We have investigated the relative contributions of these mechanisms to pHi recovery during respiratory acidosis in the Langendorff-perfused ferret heart with and without correction of extracellular pH (pHo). pHi was measured from the chemical shift of the exogenous 31P nuclear magnetic resonance pH indicator 2-deoxy-D-glucose 6-phosphate. Intrinsic intracellular buffering capacity, calculated from the change in intracellular HCO3- concentration after a change in CO2, was reduced from approximately 33 (no inhibitors of acid extrusion present) to 19 +/- 5 mM when H+ extrusion during the acid loading phase was inhibited. During respiratory acidosis (pHo approximately 6.95), the proton efflux rate (JH) calculated at pHi 6.85 was 0.30 +/- 0.04 mmol.l-1.min-1 (n = 9). When pHo was corrected by increasing external HCO3- concentration to 60 mM during respiratory acidosis (pHo approximately 7.33), JH was 1.11 +/- 0.11 mmol.l-1.min-1 (n = 7), and when pHo was partially corrected by the addition of 50 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid to the perfusion solution (pHo approximately 7.1), JH was 0.64 +/- 0.08 mmol.l-1.min-1 (n = 6). In all three groups Na(+)-H+ exchange and HCO3- influx each contributed approximately 50% to acid-equivalent efflux.(ABSTRACT TRUNCATED AT 250 WORDS)[1]

References

  1. Intracellular pH recovery during respiratory acidosis in perfused hearts. Vandenberg, J.I., Metcalfe, J.C., Grace, A.A. Am. J. Physiol. (1994) [Pubmed]
 
WikiGenes - Universities