Identification of the catalytic base in long chain acyl-CoA dehydrogenase.
We have used molecular modeling and site-directed mutagenesis to identify the catalytic residues of human long chain acyl-CoA dehydrogenase. Among the acyl-CoA dehydrogenases, a family of flavoenzymes involved in beta-oxidation of fatty acids, only the three-dimensional structure of the medium chain fatty acid specific enzyme from pig liver has been determined (Kim, J.-J.P., Wang, M., & Paschke, R. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 7523-7527). Despite the overall sequence homology, the catalytic residue (E376) of medium chain acyl-CoA dehydrogenase is not conserved in isovaleryl- and long chain acyl-CoA dehydrogenases. A molecular model of human long chain acyl-CoA dehydrogenase was derived using atomic coordinates determined by X-ray diffraction studies of the pig medium chain specific enzyme, interactive graphics, and molecular mechanics calculations. The model suggests that E261 functions as the catalytic base in the long-chain dehydrogenase. An altered dehydrogenase in which E261 was replaced by a glutamine was constructed, expressed, purified, and characterized. The mutant enzyme exhibited less than 0.02% of the wild-type activity. These data strongly suggest that E261 is the base that abstracts the alpha-proton of the acyl-CoA substrate in the catalytic pathway of this dehydrogenase.[1]References
- Identification of the catalytic base in long chain acyl-CoA dehydrogenase. Djordjevic, S., Dong, Y., Paschke, R., Frerman, F.E., Strauss, A.W., Kim, J.J. Biochemistry (1994) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg