The formation of hydroxyapatite-ionomer cements at 38 degrees C.
This study describes the formation of a calcium polyacrylate-hydroxyapatite cement. Our hypothesis was that calcium phosphates would rapidly hydrolyze in the presence of polyacrylic acid (PAA) to form a cement. PAA, tetracalcium phosphate (TetCP), and dicalcium phosphate (DCP) were reacted together and formed calcium polyacrylate (CPA) and hydroxyapatite(HAp) within 10 h at 38 degrees C, resulting in hardened masses. Reaction times increased with decreasing (HApreactants)/PAA ratios. In the first of three reaction stages, the pH increased while CPA and dicalcium phosphate dihydrate (DCPD) formed. Two steady-state pH conditions occurred during the second stage as TetCP reacted with DCPD and DCP. The first steady-state pH was the result of DCPD and TetCP reacting at near-equilibrium conditions. The second steady-state pH resulted as the reaction became limited by DCP dissolution. The third, diffusionally controlled, stage occurred as DCP and previously formed HA preacted to produce calcium-deficient HAp (Ca/P = 1.5). The emphasis of this investigation was to establish the mechanistic path involved and the rate-limiting steps of the reaction.[1]References
- The formation of hydroxyapatite-ionomer cements at 38 degrees C. TenHuisen, K.S., Brown, P.W. J. Dent. Res. (1994) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg