The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

brushite     calciumhydroxy-dioxido-oxo- phosphorane...

Synonyms: Aksepillen, Eunova, Calster (TN), CHEBI:4496, AG-H-12320, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Dibasic calcium phosphate dihydrate


Psychiatry related information on Dibasic calcium phosphate dihydrate


High impact information on Dibasic calcium phosphate dihydrate

  • The stone-forming urinary environment may be conducive to spontaneous nucleation of calcium salts, since it is generally characterized by a reduced limit of metastability (FPR or minimum supersaturation required for initiation of spontaneous nucleation) and an increased saturation (APR) of calcium oxalate and brushite (CaHPO4.2H2O) [7].
  • The inhibitor activity against the spontaneous nucleation of brushite (CaHPO4.2H2O) and calcium oxalate was not altered significantly by bedrest [8].
  • Two other calcium-containing crystals, hydroxyapatite and brushite, did not alter OPN gene expression or protein production [9].
  • In RT which had similar urinary pH and phosphate (P) than HS, Ca-P supersaturation was lower than in HS for brushite (AP, 3.25 +/- 6.67 vs. 6.01 +/- 4.85, P < 0.001; RS, -0.33 +/- 0.76 vs. 0.48 +/- 0.53, P < 0.001) and octacalcium phosphate (RS, -0.95 +/- 0.72 vs. 0.21 +/- 0.85, P < 0.001), and similar for apatite [10].
  • Allophycocyanin from the filamentous cyanophyte, Phormidium luridum, was purified by ammonium sulfate fractionation and ion exchange chromatography on brushite columns [11].

Chemical compound and disease context of Dibasic calcium phosphate dihydrate


Biological context of Dibasic calcium phosphate dihydrate


Anatomical context of Dibasic calcium phosphate dihydrate

  • Bone tissue incorporates in vitro gallium with a local structure similar to gallium-doped brushite [21].
  • Roots of extracted human molars were treated for both 10 and 30 min with a saturated solution of dicalcium phosphate dihydrate (DCPD) of pH 2.4 and subsequently with a 5.3 mmol.L-1 solution of sodium fluoride of pH 7 [22].
  • Large brushite stone in a dilated prostatic urethra [23].
  • Selected area diffraction analyses indicated that hydroxyapatite microcrystals were embedded in microfibrils with a diameter of 4.5 nm and well-banded fibrils, whereas brushite particles of 15-20 nm in an irregular shape were located in the noncollagenous organic matter around the nonmineralized, ordered collagen fibrils [24].
  • In this study, we quantified the functions of osteoblasts in the presence of beta-TCP, brushite and cement particles [25].

Associations of Dibasic calcium phosphate dihydrate with other chemical compounds

  • The same six calculi were fragmented in vitro in the Dornier HM3 lithotriptor by 200 shocks at 18 KV and the percent weight of each calculus able to be filtered through a two mm. sieve was determined; COD and uric acid (100%); COM (64%); struvite (57%); brushite (47%); cystine (16%) [26].
  • The purpose of this study was to determine whether a two-step DCPD and inorganic wash with fluoride can remineralize artificial caries-like lesions in vitro [27].
  • Defluoridation of water at high pH with use of brushite, calcium hydroxide, and bone char [28].
  • Depending upon local conditions, brushite (CaHPO4 x 2 H2O) cements may be largely resorbed or (following hydrolysis to hydroxyapatite) remain stable in vivo [29].
  • The most important determinants for ion-activity products of calcium phosphate and brushite were calcium, phosphate, citrate, urine volume, and pH [30].

Gene context of Dibasic calcium phosphate dihydrate


Analytical, diagnostic and therapeutic context of Dibasic calcium phosphate dihydrate


  1. Allophycocyanin from Nostoc sp. phycobilisomes. Properties and amino acid sequence at the NH2 terminus of the alpha and beta subunits of allophycocyanins I, II, and III. Troxler, R.F., Greenwald, L.S., Zilinskas, B.A. J. Biol. Chem. (1980) [Pubmed]
  2. Crystal-associated nephropathy in patients with brushite nephrolithiasis. Evan, A.P., Lingeman, J.E., Coe, F.L., Shao, Y., Parks, J.H., Bledsoe, S.B., Phillips, C.L., Bonsib, S., Worcester, E.M., Sommer, A.J., Kim, S.C., Tinmouth, W.W., Grynpas, M. Kidney Int. (2005) [Pubmed]
  3. Randall's plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Evan, A., Lingeman, J., Coe, F.L., Worcester, E. Kidney Int. (2006) [Pubmed]
  4. The clinical implications of brushite calculi. Klee, L.W., Brito, C.G., Lingeman, J.E. J. Urol. (1991) [Pubmed]
  5. Brushite encrustation and lithiasis of the prostatic bed after transurethral resection of the prostate. Magura, C.E., Spector, M., Allen, R., Turner, W.R. J. Urol. (1980) [Pubmed]
  6. Seasonal variations in urinary risk factors among patients with nephrolithiasis. Stuart RO 2nd, n.u.l.l., Hill, K., Poindexter, J., Pak, C.Y. The Journal of lithotripsy & stone disease. (1991) [Pubmed]
  7. Propensity for spontaneous nucleation of calcium oxalate. Quantitative assessment by urinary FPR-APR discriminant score. Pak, C.Y., Galosy, R.A. Am. J. Med. (1980) [Pubmed]
  8. Effect of prolonged bedrest on the propensity for renal stone formation. Hwang, T.I., Hill, K., Schneider, V., Pak, C.Y. J. Clin. Endocrinol. Metab. (1988) [Pubmed]
  9. Renal cell osteopontin production is stimulated by calcium oxalate monohydrate crystals. Lieske, J.C., Hammes, M.S., Hoyer, J.R., Toback, F.G. Kidney Int. (1997) [Pubmed]
  10. Lack of increased urinary calcium-oxalate supersaturation in long-term kidney transplant recipients. Dumoulin, G., Hory, B., Nguyen, N.U., Henriet, M.T., Bresson, C., Bittard, H., Saint-Hillier, Y., Regnard, J. Kidney Int. (1997) [Pubmed]
  11. Allophycocyanin from the filamentous cyanophyte, Phormidium luridum. Brown, A.S., Foster, J.A., Voynow, P.V., Franzblau, C., Troxler, R.F. Biochemistry (1975) [Pubmed]
  12. The effect of seed crystals of hydroxyapatite and brushite on the crystallization of calcium oxalate in undiluted human urine in vitro: implications for urinary stone pathogenesis. Grover, P.K., Kim, D.S., Ryall, R.L. Mol. Med. (2002) [Pubmed]
  13. Ureaplasma urealyticum-induced crystallization of magnesium ammonium phosphate and calcium phosphates in synthetic urine. Grenabo, L., Brorson, J.E., Hedelin, H., Pettersson, S. J. Urol. (1984) [Pubmed]
  14. Renal stone risk in a simulated microgravity environment: impact of treadmill exercise with lower body negative pressure. Monga, M., Macias, B., Groppo, E., Kostelec, M., Hargens, A. J. Urol. (2006) [Pubmed]
  15. Mechanical characterization of brushite and hydroxyapatite cements. Charrière, E., Terrazzoni, S., Pittet, C., Mordasini, P.H., Dutoit, M., Lemaître, J., Zysset, P.H. Biomaterials (2001) [Pubmed]
  16. Vickers hardness studies of calcium oxalate monohydrate and brushite urinary stones. Bouropoulos, N., Mouzakis, D.E., Bithelis, G., Liatsikos, E. J. Endourol. (2006) [Pubmed]
  17. Hydrolysis of dicalcium phosphate dihydrate in the presence or absence of calcium fluoride. Tung, M.S., Chow, L.C., Brown, W.E. J. Dent. Res. (1985) [Pubmed]
  18. Phagocytosis of brushite crystals by pig neutrophils. Higson, F.K., Jones, O.T. Ann. Rheum. Dis. (1985) [Pubmed]
  19. Genetic heritability of urinary stone risk in identical twins. Monga, M., Macias, B., Groppo, E., Hargens, A. J. Urol. (2006) [Pubmed]
  20. Dry mechanochemical synthesis of hydroxyapatites from DCPD and CaO: influence of instrumental parameters on the reaction kinetics. Mochales, C., Briak-BenAbdeslam, H.E., Ginebra, M.P., Terol, A., Planell, J.A., Boudeville, P. Biomaterials (2004) [Pubmed]
  21. Bone tissue incorporates in vitro gallium with a local structure similar to gallium-doped brushite. Korbas, M., Rokita, E., Meyer-Klaucke, W., Ryczek, J. J. Biol. Inorg. Chem. (2004) [Pubmed]
  22. Improvement of the caries resistance of human dental roots by a two-step conversion of the root mineral into fluoridated hydroxylapatite. Hoppenbrouwers, P.M., Groenendijk, E., Tewarie, N.R., Driessens, F.C. J. Dent. Res. (1988) [Pubmed]
  23. Large brushite stone in a dilated prostatic urethra. Kato, H., Ogawa, A. J. Urol. (1987) [Pubmed]
  24. Microstructural investigation of the early external callus after diaphyseal fractures of human long bone. Wen, H.B., Cui, F.Z., Feng, Q.L., Li, H.D., Zhu, X.D. J. Struct. Biol. (1995) [Pubmed]
  25. The effects of calcium phosphate cement particles on osteoblast functions. Pioletti, D.P., Takei, H., Lin, T., Van Landuyt, P., Ma, Q.J., Kwon, S.Y., Sung, K.L. Biomaterials (2000) [Pubmed]
  26. Stone fragility--a new therapeutic distinction. Dretler, S.P. J. Urol. (1988) [Pubmed]
  27. The use of saturated DCPD in remineralization of artificial caries lesions in vitro. Wefel, J.S., Harless, J.D. J. Dent. Res. (1987) [Pubmed]
  28. Defluoridation of water at high pH with use of brushite, calcium hydroxide, and bone char. Larsen, M.J., Pearce, E.I., Jensen, S.J. J. Dent. Res. (1993) [Pubmed]
  29. In vitro biodegradation of three brushite calcium phosphate cements by a macrophage cell-line. Xia, Z., Grover, L.M., Huang, Y., Adamopoulos, I.E., Gbureck, U., Triffitt, J.T., Shelton, R.M., Barralet, J.E. Biomaterials (2006) [Pubmed]
  30. A simplified estimate of the ion-activity product of calcium phosphate in urine. Tiselius, H.G. Eur. Urol. (1984) [Pubmed]
  31. Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies. Khan, S.R. Clin. Exp. Nephrol. (2004) [Pubmed]
  32. Effect of two new polysaccharides on growth, agglomeration and zeta potential of calcium phosphate crystals. Boevé, E.R., Cao, L.C., Deng, G., De Bruijn, W.C., Schröder, F.H. J. Urol. (1996) [Pubmed]
  33. FTIR/ATR study of protein adsorption and brushite transformation to hydroxyapatite. Xie, J., Riley, C., Kumar, M., Chittur, K. Biomaterials (2002) [Pubmed]
  34. Ionic modification of calcium phosphate cement viscosity. Part II: hypodermic injection and strength improvement of brushite cement. Barralet, J.E., Grover, L.M., Gbureck, U. Biomaterials (2004) [Pubmed]
  35. Oxygen radical production by horse and pig neutrophils induced by a range of crystals. Higson, F.K., Jones, O.T. J. Rheumatol. (1984) [Pubmed]
  36. Dual roles of brushite crystals in calcium oxalate crystallization provide physicochemical mechanisms underlying renal stone formation. Tang, R., Nancollas, G.H., Giocondi, J.L., Hoyer, J.R., Orme, C.A. Kidney Int. (2006) [Pubmed]
  37. Reinforcement of osteosynthesis screws with brushite cement. Van Landuyt, P., Peter, B., Beluze, L., Lemaître, J. Bone (1999) [Pubmed]
  38. Effects of magnesium oxide on the crystallization of calcium salts in urine in patients with recurrent nephrolithiasis. Fetner, C.D., Barilla, D.E., Townsend, J., Pak, C.Y. J. Urol. (1978) [Pubmed]
WikiGenes - Universities