The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Opposite effects of cell growth factors and cicletanine sulfate on the sodium-independent [Cl-/HCO3-] exchange in cultured vascular smooth muscle.

Cicletanine sulfate was tested on bicarbonate-dependent pHi changes in cultured vascular smooth muscle (A10 line). Cicletanine sulfate exhibited double reactivity with regard to the cell alkalinization induced by bicarbonate uptake. The analysis of 11 concentration-response curves revealed a high reactivity component (IC50 approximately 3.5 x 10(-8) mol/L) and a weak reactivity component (IC50 approximately 4 x 10(-4) ml/L). Regarding the cell acidification induced by bicarbonate extrusion, cicletanine sulfate exhibited a single high reactivity component (IC50 = 5.9 +/- 2.9 x 10(-7) mol/l; mean +/- SD, n = 7). The high and weak reactivity sites were both sensitive to DIDS. Analysis of the data strongly suggested that the highly reactive site corresponds to a sodium-independent (Cl-/HCO3-] exchanger, which catalyzes net bicarbonate efflux, and the weak-reactivity site corresponds to the inwardly directed sodium-dependent [Cl-/HCO3-] exchanger. Three cell growth factors--epidermal growth factor, arginine-vasopressin, and insulin--were able to stimulate the sodium-independent [Cl-/HCO3-] exchanger in A10 cells. Finally, cicletanine sulfate (30 mumol/L) partially inhibited serum-dependent A10 cell growth. In conclusion, cicletanine sulfate and cell growth factors exert opposite effects (inhibition and stimulation, respectively) on the sodium-independent [Cl-/HCO3-] exchanger in cultured vascular smooth muscle. The effect of cicletanine sulfate on the sodium-independent [Cl-/HCO3-] exchanger may account for the ability of cicletanine to favorably alter vascular pathology in spontaneously hypertensive rat (SHR) models.[1]

References

  1. Opposite effects of cell growth factors and cicletanine sulfate on the sodium-independent [Cl-/HCO3-] exchange in cultured vascular smooth muscle. Fanous, K., Nazaret, C., Senn, N., Decoopman-Morin, E., Allard, M., Garay, R.P. Am. J. Hypertens. (1993) [Pubmed]
 
WikiGenes - Universities