The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Requirement for the polymerization and 5'-->3' exonuclease activities of DNA polymerase I in initiation of DNA replication at oriK sites in the absence of RecA in Escherichia coli rnhA mutants.

In previous studies, we found that the requirement for RecA protein in constitutive stable DNA replication (cSDR) can be bypassed by derepression of the LexA regulon and that DNA polymerase I (DNA PolI) is essential for this Rip (RecA-independent process) pathway of cSDR (Y. Cao, R. R. Rowland, and T. Kogoma, J. Bacteriol. 175:7247-7253, 1993). In this study, the role of DNA PolI in the Rip pathway was further examined. By using F' plasmids carrying different parts of the polA gene, a series of complementation tests was carried out to investigate the requirement for the three enzymatic activities, polymerization, 3'-->5' exonuclease, and 5'-->3' exonuclease activities, of DNA PolI. The result indicated that both the 5'-->3' exonuclease and polymerization activities of DNA PolI are essential for bypassing the requirement for RecA in cSDR but that the 3'-->5' exonuclease activity can be dispensed with. Complementation experiments with rat DNA Pol beta also supported the hypothesis that a nick translation activity is probably involved in cSDR in the absence of RecA. An analysis of DNA synthesis suggested that DNA PolI is involved in the initiation but not the elongation stage of cSDR. Moreover, the dnaE293(Ts) mutation was shown to render the bypass replication temperature sensitive despite the presence of active DNA PolI, suggesting that DNA PolIII is responsible for the elongation stage of the Rip pathway. A model which describes the possible roles of RecA in cSDR and the possible function of DNA PolI in the Rip pathway is proposed.[1]


WikiGenes - Universities