The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Pathways of trans,trans-muconaldehyde metabolism in mouse liver cytosol: reversibility of monoreductive metabolism and formation of end products.

The metabolism of trans,trans-muconaldehyde (MUC), a hematotoxic agent which is a presumed in vivo metabolite of benzene, was studied in mouse liver cytosol. MUC was incubated for 30 min at 37 degrees C with mouse liver cytosol (from CD-1 mice) supplemented with NAD+ and the products were analyzed by reverse phase HPLC. Two products were detected in addition to the previously identified acid-aldehyde 6-oxo-trans,trans-2,4-hexadienoic acid (COOH-M-CHO) and the diacid trans,trans-muconic acid (COOH-M-COOH). Based on the molecular weight (112) obtained by thermo-spray LC-mass spectrometry and the absorbance maximum (269 nm), one of the products was identified as the aldehyde-alcohol 6-hydroxy-trans,trans-2,4-hexadienal (CHO-M-OH). The second product was identified as 6-hydroxy-trans,trans-2,4-hexadienoic acid (COOH-M-OH) by coelution with authentic standard, the fragmentation pattern obtained by electron impact mass spectrometry and the absorbance maximum (258 nm). Time course and concentration dependency studies indicate that COOH-M-OH and COOH-M-COOH are end products of MUC metabolism while CHO-M-OH, and COOH-M-CHO, the initially formed mono-reduction and mono-oxidation products, respectively, are the intermediates leading to these end products. The metabolite COOH-M-OH is formed mainly by oxidation of CHO-M-OH and to a much lesser extent by reduction of CHO-M-COOH, whereas COOH-M-COOH is formed solely by oxidation of COOH-M-CHO. The reduction of MUC to CHO-M-OH is reversible, whereas oxidation to COOH-M-CHO is not. The compound CHO-M-OH is not only oxidized to COOH-M-OH by oxidation of the aldehyde functional group, but is also converted back to MUC by oxidation of the alcohol functional group.[1]

References

 
WikiGenes - Universities