The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Effect of BOF-4272 on the oxidation of allopurinol and pyrazinamide in vivo. Is xanthine dehydrogenase or aldehyde oxidase more important in oxidizing both allopurinol and pyrazinamide?

Allopurinol or pyrazinamide was administered to rats treated with BOF-4272 (a potent xanthine oxidase inhibitor) to investigate to what degree xanthine dehydrogenase participates in the oxidation of these agents. BOF-4272 markedly decreased the plasma concentration and the urinary excretion of both oxypurinol and 5-hydroxypyrazinamide. It also decreased the sum of the urinary excretion of allopurinol and oxypurinol and that of pyrazinamide and its metabolites, although it did not affect the sum of the plasma concentrations of allopurinol and oxypurinol at 105 min after administration of allopurinol or the plasma concentration of pyrazinamide during the period after the administration of pyrazinamide. These results suggested that BOF-4272 almost completely inhibited the oxidation of allopurinol and pyrazinamide and had some effect on the excretion and/or the tissue incorporation of these two compounds. Since the in vitro study demonstrated that BOF-4272 did not inhibit the activity of aldehyde oxidase, which oxidized both allopurinol to oxypurinol and pyrazinamide to 5-hydroxypyrazinamide, the results suggested that xanthine dehydrogenase was the more important enzyme in converting allopurinol to oxypurinol and pyrazinamide to 5-hydroxypyrazinamide.[1]

References

  1. Effect of BOF-4272 on the oxidation of allopurinol and pyrazinamide in vivo. Is xanthine dehydrogenase or aldehyde oxidase more important in oxidizing both allopurinol and pyrazinamide? Yamamoto, T., Moriwaki, Y., Suda, M., Nasako, Y., Takahashi, S., Hiroishi, K., Nakano, T., Hada, T., Higashino, K. Biochem. Pharmacol. (1993) [Pubmed]
 
WikiGenes - Universities