The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

T-cadherin 2: molecular characterization, function in cell adhesion, and coexpression with T-cadherin and N-cadherin.

Cadherins are integral membrane glycoproteins that mediate calcium-dependent, homophilic cell-cell adhesion and are implicated in controlling tissue morphogenesis. T-cadherin is anchored to the membrane through a glycosyl phosphatidylinositol (Ranscht B, Dours-Zimmermann MT: Neuron 7:391-402, 1991) and expressed in a restricted pattern in developing embryos (Ranscht B, Bronner-Fraser M: Development 111:15-22, 1991). We report here the molecular and functional characterization of the T-cadherin isoform, T-cadherin 2 (Tcad-2) and the expression of the corresponding mRNA. Tcad-2 cDNA differs in its 3' nucleotide sequence from T-cadherin cDNA and encodes a protein in which the carboxy terminal Leu of T-cadherin is substituted by Lys and extended by the amino acids SerPheProTyrVal. By RNase protection, mRNAs encoding the T-cadherin isoforms are coexpressed in heart, muscle, liver, skin, somites, and in neural tissue. Many tissues contain both T-cadherin and Tcad-2 mRNAs in conjunction with N-cadherin transcripts, and T-cadherins and N-cadherin proteins are coexpressed on the surface of individual neurons in vitro. Expression in Chinese hamster ovary cells (CHO) revealed that Tcad-2 is a glycosyl phosphatidylinositol-anchored membrane protein that functions in calcium-dependent, homophilic cell adhesion. The identification of a functional T-cadherin isoform and the coexpression of T-cadherins and N-cadherin by individual cells suggest that specific adhesive interactions of embryonic cells may involve a complex interplay between multiple cadherins.[1]

References

  1. T-cadherin 2: molecular characterization, function in cell adhesion, and coexpression with T-cadherin and N-cadherin. Sacristán, M.P., Vestal, D.J., Dours-Zimmermann, M.T., Ranscht, B. J. Neurosci. Res. (1993) [Pubmed]
 
WikiGenes - Universities