Functional interactions of the retinoblastoma protein with mammalian D-type cyclins.
The retinoblastoma gene product (Rb) can interact efficiently with two of three D-type G1 cyclins (D2 and D3) in vitro. Binding depended upon the minimal regions of Rb necessary for its growth-suppressive activity, as well as upon the D-type cyclin sequence motif shared with Rb-binding DNA tumor virus oncoproteins. Coexpression of the three D-type cyclins with the cyclin-dependent kinase ( cdk4) in insect cells generated Rb kinase activity. By contrast, cyclins D2 and D3, but not D1, activated another such kinase, cdk2. Introduction of cyclin D2 and Rb into the Rb-deficient cell line SAOS-2 led to overt Rb hyperphosphorylation, whereas Rb, expressed alone or together with cyclin D1, remained unphosphorylated. Cyclin D2-dependent phosphorylation inhibited its binding to the transcription factor E2F and reversed the Rb G1 exit block in the cell cycle. Thus, all D-type cyclins do not function equivalently, and one of them plays a major role in reversing the cycle-blocking function of a known tumor suppressor.[1]References
- Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Ewen, M.E., Sluss, H.K., Sherr, C.J., Matsushime, H., Kato, J., Livingston, D.M. Cell (1993) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg