Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle.
The phototrophic bacterium Chloroflexus aurantiacus can grow autotrophically but seems not to assimilate CO2 via any of the known autotrophic pathways. Holo [Holo, H. (1989) Arch. Microbiol. 151, 252-256] proposed a new pathway in which 3-hydroxypropionate is formed from acetyl-CoA. Previous studies excluded the operation of known CO2 fixation pathways and provided indirect evidence for the suggested pathway based on 13C-labelling experiments. Here all enzyme activities of the postulated cyclic CO2 fixation mechanism are demonstrated in vitro. In essence, acetyl-CoA is carboxylated and reductively converted via 3-hydroxypropionate to propionyl-CoA. Propionyl-CoA is carboxylated and converted via succinyl-CoA and CoA transfer to malyl-CoA. Malyl-CoA is cleaved to acetyl-CoA and glyoxylate. Thereby, the first CO2 acceptor molecule acetyl-CoA is regenerated, completing the cycle and the net CO2 fixation product glyoxylate is released. This cycle represents the fourth autotrophic pathway in nature and is designated the 3-hydroxypropionate cycle.[1]References
- Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. Strauss, G., Fuchs, G. Eur. J. Biochem. (1993) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg