The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

glyoxalate     oxaldehydic acid

Synonyms: glyoxylate, glyox, Oxoethanoate, Formylformate, Glyoxalsaeure, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of oxaldehydic acid


Psychiatry related information on oxaldehydic acid


High impact information on oxaldehydic acid


Chemical compound and disease context of oxaldehydic acid


Biological context of oxaldehydic acid


Anatomical context of oxaldehydic acid


Associations of oxaldehydic acid with other chemical compounds

  • In addition, mdh3-disrupted cells were unable to grow on oleate whereas growth on other non-fermentable carbon sources was normal, suggesting that MDH3 is involved in the reoxidation of NADH generated during fatty acid beta-oxidation rather than functioning as part of the glyoxylate cycle [23].
  • NE uptake activity was measured using [3H]NE, and noradrenergic nerve profiles were visualized by glyoxylic acid (SPG)-induced histofluorescence and tyrosine hydroxylase immunocytochemical staining [24].
  • The catalytic activity of tyrosine hydroxylase and of other enzymes required for catecholamine production was demonstrated in the cultures by glyoxylic acid-induced histofluorescence and by radiochemical measurement of the conversion of exogenous tyrosine to norepinephrine [25].
  • The expression of some nuclear genes in Saccharomyces cerevisiae, such as the CIT2 gene, which encodes a glyoxylate cycle isoform of citrate synthase, is responsive to the functional state of mitochondria [26].
  • Here we report the 1.75A high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1A resolution, respectively [27].

Gene context of oxaldehydic acid

  • We have previously shown that the RTG genes control the retrograde pathway, defined as a change in the expression of a subset of nuclear genes, e.g., the glyoxylate cycle CIT2 gene, in response to changes in the functional state of mitochondria [28].
  • Disruption of the chromosomal MDH3 locus produced a reduction in cellular growth rates on acetate, consistent with the presumed function of this isozyme in the glyoxylate pathway of yeast [29].
  • We have examined whether other genes of the glyoxylate cycle exhibit retrograde regulation and the role of RTG1 and RTG2 in their expression [30].
  • GGT1 and GGT2 are Ala aminotransferase (AlaAT) homologs from Arabidopsis that represent another type of glyoxylate aminotransferase [31].
  • The genes for the two unique enzymes of the glyoxylate shunt, aceA and aceB, are located at 90 min on the E. coli K-12 genetic map [32].

Analytical, diagnostic and therapeutic context of oxaldehydic acid


  1. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. McKinney, J.D., Höner zu Bentrup, K., Muñoz-Elías, E.J., Miczak, A., Chen, B., Chan, W.T., Swenson, D., Sacchettini, J.C., Jacobs, W.R., Russell, D.G. Nature (2000) [Pubmed]
  2. Regulation of the acetate operon in Escherichia coli: purification and functional characterization of the IclR repressor. Cortay, J.C., Nègre, D., Galinier, A., Duclos, B., Perrière, G., Cozzone, A.J. EMBO J. (1991) [Pubmed]
  3. Identification of mutations associated with peroxisome-to-mitochondrion mistargeting of alanine/glyoxylate aminotransferase in primary hyperoxaluria type 1. Purdue, P.E., Takada, Y., Danpure, C.J. J. Cell Biol. (1990) [Pubmed]
  4. Regulation of acetate metabolism by protein phosphorylation in enteric bacteria. Cozzone, A.J. Annu. Rev. Microbiol. (1998) [Pubmed]
  5. Study of an alternate glyoxylate cycle for acetate assimilation by Rhodobacter sphaeroides. Alber, B.E., Spanheimer, R., Ebenau-Jehle, C., Fuchs, G. Mol. Microbiol. (2006) [Pubmed]
  6. Alcohol consumption in the absence of adequate nutrition may lead to activation of the glyoxylate cycle in man. Kokavec, A., Crowe, S.F. Med. Hypotheses (2002) [Pubmed]
  7. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Muñoz-Elías, E.J., McKinney, J.D. Nat. Med. (2005) [Pubmed]
  8. The glyoxylate cycle is required for fungal virulence. Lorenz, M.C., Fink, G.R. Nature (2001) [Pubmed]
  9. Increasing photosynthesis by inhibiting photorespiration with glyoxylate. Oliver, D.J., Zelitch, I. Science (1977) [Pubmed]
  10. Compensatory phosphorylation of isocitrate dehydrogenase. A mechanism for adaptation to the intracellular environment. LaPorte, D.C., Thorsness, P.E., Koshland, D.E. J. Biol. Chem. (1985) [Pubmed]
  11. The role of glyoxylate in the regulation of biodegradative threonine dehydratase of Escherichia coli. Park, L.S., Datta, P. J. Biol. Chem. (1979) [Pubmed]
  12. The plant-like c2 glycolate cycle and the bacterial-like glycerate pathway cooperate in phosphoglycolate metabolism in cyanobacteria. Eisenhut, M., Kahlon, S., Hasse, D., Ewald, R., Lieman-Hurwitz, J., Ogawa, T., Ruth, W., Bauwe, H., Kaplan, A., Hagemann, M. Plant Physiol. (2006) [Pubmed]
  13. Control of flux through the citric acid cycle and the glyoxylate bypass in Escherichia coli. Holms, W.H. Biochem. Soc. Symp. (1987) [Pubmed]
  14. Pyridoxamine lowers kidney crystals in experimental hyperoxaluria: a potential therapy for primary hyperoxaluria. Chetyrkin, S.V., Kim, D., Belmont, J.M., Scheinman, J.I., Hudson, B.G., Voziyan, P.A. Kidney Int. (2005) [Pubmed]
  15. Peptide amidation. Bradbury, A.F., Smyth, D.G. Trends Biochem. Sci. (1991) [Pubmed]
  16. Re-examining the role of the glyoxylate cycle in oilseeds. Eastmond, P.J., Graham, I.A. Trends Plant Sci. (2001) [Pubmed]
  17. Transcriptome of Salmonella enterica serovar Typhi within macrophages revealed through the selective capture of transcribed sequences. Faucher, S.P., Porwollik, S., Dozois, C.M., McClelland, M., Daigle, F. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  18. arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Iuchi, S., Lin, E.C. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  19. Mammalian alanine/glyoxylate aminotransferase 1 is imported into peroxisomes via the PTS1 translocation pathway. Increased degeneracy and context specificity of the mammalian PTS1 motif and implications for the peroxisome-to-mitochondrion mistargeting of AGT in primary hyperoxaluria type 1. Motley, A., Lumb, M.J., Oatey, P.B., Jennings, P.R., De Zoysa, P.A., Wanders, R.J., Tabak, H.F., Danpure, C.J. J. Cell Biol. (1995) [Pubmed]
  20. Subcellular localization of glyoxylate cycle enzymes in Ascaris suum larvae. Rubin, H., Trelease, R.N. J. Cell Biol. (1976) [Pubmed]
  21. Investigation of the glyoxysome-peroxisome transition in germinating cucumber cotyledons using double-label immunoelectron microscopy. Titus, D.E., Becker, W.M. J. Cell Biol. (1985) [Pubmed]
  22. Yeast aconitase in two locations and two metabolic pathways: seeing small amounts is believing. Regev-Rudzki, N., Karniely, S., Ben-Haim, N.N., Pines, O. Mol. Biol. Cell (2005) [Pubmed]
  23. The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. van Roermund, C.W., Elgersma, Y., Singh, N., Wanders, R.J., Tabak, H.F. EMBO J. (1995) [Pubmed]
  24. Cardiac noradrenergic nerve terminal abnormalities in dogs with experimental congestive heart failure. Himura, Y., Felten, S.Y., Kashiki, M., Lewandowski, T.J., Delehanty, J.M., Liang, C.S. Circulation (1993) [Pubmed]
  25. Differentiation of catecholaminergic cells in cultures of embryonic avian sensory ganglia. Xue, Z.G., Smith, J., Le Douarin, N.M. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  26. A basic helix-loop-helix-leucine zipper transcription complex in yeast functions in a signaling pathway from mitochondria to the nucleus. Jia, Y., Rothermel, B., Thornton, J., Butow, R.A. Mol. Cell. Biol. (1997) [Pubmed]
  27. Crystal Structures of Aedes aegypti Alanine Glyoxylate Aminotransferase. Han, Q., Robinson, H., Gao, Y.G., Vogelaar, N., Wilson, S.R., Rizzi, M., Li, J. J. Biol. Chem. (2006) [Pubmed]
  28. A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function. Liu, Z., Butow, R.A. Mol. Cell. Biol. (1999) [Pubmed]
  29. Isolation and characterization of the yeast gene encoding the MDH3 isozyme of malate dehydrogenase. Steffan, J.S., McAlister-Henn, L. J. Biol. Chem. (1992) [Pubmed]
  30. RTG genes in yeast that function in communication between mitochondria and the nucleus are also required for expression of genes encoding peroxisomal proteins. Chelstowska, A., Butow, R.A. J. Biol. Chem. (1995) [Pubmed]
  31. Alanine aminotransferase homologs catalyze the glutamate:glyoxylate aminotransferase reaction in peroxisomes of Arabidopsis. Liepman, A.H., Olsen, L.J. Plant Physiol. (2003) [Pubmed]
  32. Genetic regulation of the glyoxylate shunt in Escherichia coli K-12. Maloy, S.R., Nunn, W.D. J. Bacteriol. (1982) [Pubmed]
  33. 2-Keto-4-hydroxyglutarate aldolase: purification and characterization of the homogeneous enzyme from bovine kidney. Dekker, E.E., Kitson, R.P. J. Biol. Chem. (1992) [Pubmed]
  34. The glyoxylate cycle in an arbuscular mycorrhizal fungus. Carbon flux and gene expression. Lammers, P.J., Jun, J., Abubaker, J., Arreola, R., Gopalan, A., Bago, B., Hernandez-Sebastia, C., Allen, J.W., Douds, D.D., Pfeffer, P.E., Shachar-Hill, Y. Plant Physiol. (2001) [Pubmed]
  35. Senescent changes in a neurobiological model system: cerebellar Purkinje cell electrophysiology and correlative anatomy. Rogers, J., Silver, M.A., Shoemaker, W.J., Bloom, F.E. Neurobiol. Aging (1980) [Pubmed]
  36. Lumbar sympathectomy failed to reverse mechanical allodynia- and hyperalgesia-like behavior in rats with L5 spinal nerve injury. Ringkamp, M., Eschenfelder, S., Grethel, E.J., Häbler, H.J., Meyer, R.A., Jänig, W., Raja, S.N. Pain (1999) [Pubmed]
  37. Binding of branched-chain 2-oxo acids to bovine serum albumin. Livesey, G., Lund, P. Biochem. J. (1982) [Pubmed]
WikiGenes - Universities