A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions.
Transcription of the Saccharomyces cerevisiae CTT1 gene encoding the cytosolic catalase T is activated by a variety of stress conditions: it is derepressed by nitrogen starvation and induced by heat shock. Furthermore, it is activated by osmotic and oxidative stress. This study shows that a CTT1 upstream region previously found to be involved in nitrogen, cAMP and heat control (base pairs -382 to -325) contains a UAS element (STRE, -368 to -356), which is sufficient for the activation of a reporter gene by all types of stress acting on CTT1. Gel retardation experiments demonstrated the existence of a factor specifically binding to STRE, but to a lesser extent to mutated elements having partly or entirely lost the ability to mediate stress control. Heat activation of STRE, but not of a canonical heat shock element, is enhanced by a ras2 defect mutation, which enhances thermotolerance, and is dramatically reduced by a bcy1 disruption mutation, which decreases thermotolerance. It can be hypothesized, therefore, that the novel stress control element is important for the establishment of induced stress tolerance.[1]References
- A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. Marchler, G., Schüller, C., Adam, G., Ruis, H. EMBO J. (1993) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg