The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

RAS2  -  Ras family GTPase RAS2

Saccharomyces cerevisiae S288c

Synonyms: ASC1, CTN5, CYR3, GLC5, N2198, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of RAS2

  • The E. coli transformant carrying the yeast RAS2 or RAS2val19 gene had no adenylate cyclase activity [1].
  • The RAS2 gene is consistently required for maintenance of life span when heat stress is chronic or in its extension when heat stress is transient or absent altogether [2].
  • In addition, activation of Ras2, a regulator of cAMP generation, results in some protection from fluconazole toxicity in a fashion independent of the efflux transporter Pdr5p [3].

High impact information on RAS2


Biological context of RAS2

  • We present a genetic analysis of RAS1 and RAS2 of S. cerevisiae, two genes that are highly homologous to mammalian ras genes [9].
  • By constructing in vitro ras genes disrupted by selectable genes and introducing these by gene replacement into the respective ras loci, we have determined that neither RAS1 nor RAS2 are by themselves essential genes [9].
  • S. cerevisiae strains containing RAS2val19, a RAS2 gene with a missense mutation analogous to one that activates the transforming potential of mammalian ras genes, have growth and biochemical properties strikingly similar to yeast strains carrying IAC or bcy1 [10].
  • TS1 cells accumulate as unbudded cells upon temperature shift from 30 to 37 degrees C, thus showing that the RAS1 and RAS2 gene functions are important for progression through the G1 phase of the cell cycle [11].
  • The yeast RAS1 and RAS2 genes appear to be involved in control of cell growth in response to nutrients [12].

Anatomical context of RAS2

  • Overexpression of the budding yeast RAS2 gene in Nicotiana plumbaginifolia cells revealed that RAS2 acted as 'suicide' gene in freshly isolated protoplasts from leaves and blocked cell proliferation in cell suspension-derived protoplasts [13].
  • Ras2 proteins expressed in an erf2Delta strain have a reduced level of palmitoylation and are partially mislocalized to the vacuole [14].
  • Erf2p has been shown to be required for the plasma membrane localization of GFP-Ras2p via a pathway distinct from the classical secretory pathway (X. Dong and R. J. Deschenes, manuscript in preparation) [15].
  • The possible mechanisms of ASC1/RAS2 suppression of atp1-2 are discussed; we suggest that RAS2 is part of the regulatory circuit involved in the control of F(1)-ATPase subunit levels in mitochondria [16].
  • Mutants in the Saccharomyces cerevisiae RAS2 gene influence life span, cytoskeleton, and regulation of mitosis [17].

Associations of RAS2 with chemical compounds


Physical interactions of RAS2

  • On the basis of these data, we propose that the ability of Cdc25 to interact with Ras2 proteins is strongly dependent on the activation state of Ras2 [22].
  • Like the wild-type enzyme, the RAS-dependent activity of the mutant adenylate cyclase is turned on by the GTP-bound form of the RAS2 protein [11].
  • These results strongly suggest that the residues R80 and N81 are situated in or closely associated with the Ras2p specific site binding Sdc25p [23].

Enzymatic interactions of RAS2

  • Ste24p cleaves the carboxyl-terminal "-AAX" from the yeast mating pheromone a-factor, whereas Rce1p cleaves the -AAX from both a-factor and Ras2p [24].

Regulatory relationships of RAS2

  • Screening of approximately 13,000 mutagenized colonies for galactose-dependent growth at a high temperature (37 degrees) yielded six temperature-sensitive ras2 (ras2ts) mutations and one temperature-sensitive cyr1 (cyr1ts) mutation that can be suppressed by overexpression or increased dosage of RAS2 [25].
  • The binding properties of Cdc25 to Ras2 were strongly diminished in yeast cells expressing an inactive Ira1 protein, which normally acts as a negative regulator of Ras activity [22].
  • To isolate temperature-sensitive mutations in the RAS2 gene, we constructed a plasmid carrying a RAS2 gene whose expression is under the control of the galactose-inducible GAL1 promoter [25].
  • Cells carrying a high copy number of plasmid GPA2 (YEpGPA2) had markedly elevated levels of cAMP and could suppress a temperature-sensitive mutation of RAS2 [26].
  • Partially purified preparations of the carboxy-terminal domain of the SCD25 gene product enhanced the exchange rate of guanosine diphosphate (GDP) to guanosine triphosphate (GTP) of pure RAS2 protein by stimulating the release of GDP [27].

Other interactions of RAS2

  • A GPA2 null allele conferred a severe growth defect on cells containing a null allele of RAS2, although either mutation alone had little effect on growth rate [12].
  • Genetic data suggest that the yeast cell cycle control gene CDC25 is an upstream regulator of RAS2 [22].
  • Strains lacking ERF2 are viable, but they have a synthetic growth defect in the absence of RAS2 and partially suppress the heat shock sensitivity resulting from expression of the hyperactive RAS2(V19) allele [14].
  • We tested whether SHR5, like previously isolated suppressors of hyperactivated RAS2, acts by affecting the membrane attachment and/or posttranslational modification of Ras proteins [28].
  • We have previously demonstrated that STE14 encodes the enzyme which mediates carboxyl methylation of the Saccharomyces cerevisiae CAAX proteins a-factor, RAS1, and RAS2 [29].

Analytical, diagnostic and therapeutic context of RAS2


  1. Reconstitution of the GTP-dependent adenylate cyclase from products of the yeast CYR1 and RAS2 genes in Escherichia coli. Uno, I., Mitsuzawa, H., Matsumoto, K., Tanaka, K., Oshima, T., Ishikawa, T. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  2. Heat stress-induced life span extension in yeast. Shama, S., Lai, C.Y., Antoniazzi, J.M., Jiang, J.C., Jazwinski, S.M. Exp. Cell Res. (1998) [Pubmed]
  3. Cyclic AMP and fluconazole resistance in Saccharomyces cerevisiae. Kontoyiannis, D.P., Rupp, S. Antimicrob. Agents Chemother. (2000) [Pubmed]
  4. Yeast Ras regulates the complex that catalyzes the first step in GPI-anchor biosynthesis at the ER. Sobering, A.K., Watanabe, R., Romeo, M.J., Yan, B.C., Specht, C.A., Orlean, P., Riezman, H., Levin, D.E. Cell (2004) [Pubmed]
  5. Functional cloning of BUD5, a CDC25-related gene from S. cerevisiae that can suppress a dominant-negative RAS2 mutant. Powers, S., Gonzales, E., Christensen, T., Cubert, J., Broek, D. Cell (1991) [Pubmed]
  6. Cloning and characterization of CAP, the S. cerevisiae gene encoding the 70 kd adenylyl cyclase-associated protein. Field, J., Vojtek, A., Ballester, R., Bolger, G., Colicelli, J., Ferguson, K., Gerst, J., Kataoka, T., Michaeli, T., Powers, S. Cell (1990) [Pubmed]
  7. Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Toda, T., Cameron, S., Sass, P., Zoller, M., Wigler, M. Cell (1987) [Pubmed]
  8. The ras-related YPT1 gene product in yeast: a GTP-binding protein that might be involved in microtubule organization. Schmitt, H.D., Wagner, P., Pfaff, E., Gallwitz, D. Cell (1986) [Pubmed]
  9. Genetic analysis of yeast RAS1 and RAS2 genes. Kataoka, T., Powers, S., McGill, C., Fasano, O., Strathern, J., Broach, J., Wigler, M. Cell (1984) [Pubmed]
  10. In yeast, RAS proteins are controlling elements of adenylate cyclase. Toda, T., Uno, I., Ishikawa, T., Powers, S., Kataoka, T., Broek, D., Cameron, S., Broach, J., Matsumoto, K., Wigler, M. Cell (1985) [Pubmed]
  11. Suppression of defective RAS1 and RAS2 functions in yeast by an adenylate cyclase activated by a single amino acid change. De Vendittis, E., Vitelli, A., Zahn, R., Fasano, O. EMBO J. (1986) [Pubmed]
  12. GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Galpha subunit and functions in a Ras-independent pathway. Xue, Y., Batlle, M., Hirsch, J.P. EMBO J. (1998) [Pubmed]
  13. Yeast RAS2 affects cell viability, mitotic division and transient gene expression in Nicotiana species. Hilson, P., Dewulf, J., Delporte, F., Installé, P., Jacquemin, J.M., Jacobs, M., Negrutiu, I. Plant Mol. Biol. (1990) [Pubmed]
  14. Erf2, a novel gene product that affects the localization and palmitoylation of Ras2 in Saccharomyces cerevisiae. Bartels, D.J., Mitchell, D.A., Dong, X., Deschenes, R.J. Mol. Cell. Biol. (1999) [Pubmed]
  15. Erf4p and Erf2p form an endoplasmic reticulum-associated complex involved in the plasma membrane localization of yeast Ras proteins. Zhao, L., Lobo, S., Dong, X., Ault, A.D., Deschenes, R.J. J. Biol. Chem. (2002) [Pubmed]
  16. ASC1/RAS2 suppresses the growth defect on glycerol caused by the atp1-2 mutation in the yeast Saccharomyces cerevisiae. Mabuchi, T., Ichimura, Y., Takeda, M., Douglas, M.G. J. Biol. Chem. (2000) [Pubmed]
  17. Mutants in the Saccharomyces cerevisiae RAS2 gene influence life span, cytoskeleton, and regulation of mitosis. Pichová, A., Vondráková, D., Breitenbach, M. Can. J. Microbiol. (1997) [Pubmed]
  18. Regulatory function of the Saccharomyces cerevisiae RAS C-terminus. Marshall, M.S., Gibbs, J.B., Scolnick, E.M., Sigal, I.S. Mol. Cell. Biol. (1987) [Pubmed]
  19. Farnesyl cysteine C-terminal methyltransferase activity is dependent upon the STE14 gene product in Saccharomyces cerevisiae. Hrycyna, C.A., Clarke, S. Mol. Cell. Biol. (1990) [Pubmed]
  20. A new RAS mutation that suppresses the CDC25 gene requirement for growth of Saccharomyces cerevisiae. Camonis, J.H., Jacquet, M. Mol. Cell. Biol. (1988) [Pubmed]
  21. Role of RAS2 in recovery from chronic stress: effect on yeast life span. Shama, S., Kirchman, P.A., Jiang, J.C., Jazwinski, S.M. Exp. Cell Res. (1998) [Pubmed]
  22. The Saccharomyces cerevisiae CDC25 gene product binds specifically to catalytically inactive ras proteins in vivo. Munder, T., Fürst, P. Mol. Cell. Biol. (1992) [Pubmed]
  23. Properties of the catalytic domain of sdc25p, a yeast GDP/GTP exchange factor of Ras proteins. Complexation with wild-type Ras2p, [S24N]Ras2p and [R80D, N81D]Ras2p. Poullet, P., Créchet, J.B., Bernardi, A., Parmeggiani, A. Eur. J. Biochem. (1995) [Pubmed]
  24. Biochemical studies of Zmpste24-deficient mice. Leung, G.K., Schmidt, W.K., Bergo, M.O., Gavino, B., Wong, D.H., Tam, A., Ashby, M.N., Michaelis, S., Young, S.G. J. Biol. Chem. (2001) [Pubmed]
  25. Isolation and characterization of temperature-sensitive mutations in the RAS2 and CYR1 genes of Saccharomyces cerevisiae. Mitsuzawa, H., Uno, I., Oshima, T., Ishikawa, T. Genetics (1989) [Pubmed]
  26. Isolation of a second yeast Saccharomyces cerevisiae gene (GPA2) coding for guanine nucleotide-binding regulatory protein: studies on its structure and possible functions. Nakafuku, M., Obara, T., Kaibuchi, K., Miyajima, I., Miyajima, A., Itoh, H., Nakamura, S., Arai, K., Matsumoto, K., Kaziro, Y. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  27. Enhancement of the GDP-GTP exchange of RAS proteins by the carboxyl-terminal domain of SCD25. Créchet, J.B., Poullet, P., Mistou, M.Y., Parmeggiani, A., Camonis, J., Boy-Marcotte, E., Damak, F., Jacquet, M. Science (1990) [Pubmed]
  28. Mutations in the SHR5 gene of Saccharomyces cerevisiae suppress Ras function and block membrane attachment and palmitoylation of Ras proteins. Jung, V., Chen, L., Hofmann, S.L., Wigler, M., Powers, S. Mol. Cell. Biol. (1995) [Pubmed]
  29. Nucleotide sequence of the yeast STE14 gene, which encodes farnesylcysteine carboxyl methyltransferase, and demonstration of its essential role in a-factor export. Sapperstein, S., Berkower, C., Michaelis, S. Mol. Cell. Biol. (1994) [Pubmed]
  30. Glucose repression of PRX1 expression is mediated by Tor1p and Ras2p through inhibition of Msn2/4p in Saccharomyces cerevisiae. Monteiro, G., Netto, L.E. FEMS Microbiol. Lett. (2004) [Pubmed]
  31. Mutagenic alteration of the distal switch II region of RAS blocks CDC25-dependent signaling functions. Mirisola, M.G., Seidita, G., Verrotti, A.C., Di Blasi, F., Fasano, O. J. Biol. Chem. (1994) [Pubmed]
  32. Multiple Upstream Signals Converge on the Adaptor Protein Mst50 in Magnaporthe grisea. Park, G., Xue, C., Zhao, X., Kim, Y., Orbach, M., Xu, J.R. Plant Cell (2006) [Pubmed]
WikiGenes - Universities