The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The minCD locus of Bacillus subtilis lacks the minE determinant that provides topological specificity to cell division.

A key event of the sporulation process in Bacillus subtilis is the asymmetric cell division that divides the developing cell into two unequal compartments. To examine the function of vegetative cell division genes in this developmental division, we isolated and characterized the B. subtilis counterpart to the Escherichia coli minicell operon minB, which governs correct placement of the division septum. Starting from the closely linked spoIVF locus, we used walking methods to isolate the region of the B. subtilis chromosome proximate to the divIVB minicell locus. DNA sequence analysis found two open reading frames whose predicted products had significant identity to the E. coli MinC cell division inhibitor and the MinD ATPase activator of MinC, and disruption of minCD function generated a minicell phenotype in B. subtilis. Notably, no homologue to the E. coli MinE topological specificity element was found in the B. subtilis minCD region. The B. subtilis min genes were part of an operon transcribed from a major promoter more than 2.5 kb upstream from minC. An internal promoter immediately upstream from minC was dependent on RNA polymerase containing sigma-H and was active at the onset of sporulation. However, neither minC nor minD function was absolutely required for sporulation and, by implication, for asymmetric septum formation.[1]

References

 
WikiGenes - Universities