The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Altered Golgi apparatus in hydrostatically loaded articular cartilage chondrocytes.

OBJECTIVES: Articular cartilage proteoglycan content is controlled by joint loading. This study aimed to elucidate the role of hydrostatic pressure in this regulation. METHODS: Primary cultures of chondrocytes from bovine articular cartilage, grown on coverslips, were subjected to 5, 15, or 30 MPa hydrostatic pressure, applied continuously or cyclically at 0.125 or 0.05 Hz. The Golgi apparatus was visualised either by a fluorochrome coupled wheat germ agglutinin or by transmission electron microscopy. Proteoglycan synthesis was studied by the incorporation of sulphur-35 labelled sulphate. RESULTS: After 30 MPa continuous hydrostatic pressure, the Golgi apparatus was observed in a compact form with a concomitant decrease in proteoglycan synthesis. The normal stacked appearance of the Golgi apparatus was no more visible in the electron microscopy preparation of the pressurised chondrocytes. This effect was reversible and was also noticed after 15 MPa continuous load, though to a minor extent. Cyclic pressures (5-30 MPa) caused no apparent change in the Golgi apparatus. The shape of some cells changed to a more retracted form after 30 MPa continuous pressure. Nocodazole, which causes disassembly of the microtubules, blocked the compacting influence of pressurisation on the Golgi apparatus, and reduced proteoglycan synthesis to about half of the control level. CONCLUSIONS: The packing of the Golgi apparatus is dependent on microtubules and may contribute to the inhibition of proteoglycan synthesis observed in articular cartilage subjected to high hydrostatic pressure.[1]

References

  1. Altered Golgi apparatus in hydrostatically loaded articular cartilage chondrocytes. Parkkinen, J.J., Lammi, M.J., Pelttari, A., Helminen, H.J., Tammi, M., Virtanen, I. Ann. Rheum. Dis. (1993) [Pubmed]
 
WikiGenes - Universities