The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

An unusual profile of musk xylene-induced drug-metabolizing enzymes in rat liver.

We have demonstrated previously that musk xylene, a non-mutagenic carcinogen, is a novel and specific inducer of CYP1A2 in rats (Iwata et al., Biochem Biophys Res Commun 184: 149-153, 1992). In the present study, the effects of musk xylene (50, 100 or 200 mg/kg body weight, i.p., for 5 consecutive days) on both Phase I and Phase II metabolizing enzymes in rat liver were investigated further and more completely. Among the mixed-function oxidases monitored, 7-ethoxycoumarin deethylase and 7-pentoxyresorufin depentylase activities were increased at all dose levels from 1.6- to 1.7-fold and 2.6- to 3.1-fold, respectively. Benzo[a]pyrene hydroxylase activity was increased significantly at only the 200 mg/kg dose level of musk xylene (1.5-fold). Regarding Phase II enzymes, activities of both cytosolic DT-diaphorase and glutathione S-transferase (GST) were increased up to 2.0- to 2.4-fold by musk xylene in a dose-dependent manner. Western blot analysis revealed that the changes in these activities were caused by increases in the amounts of DT-diaphorase and GST Ya subunit. Microsomal UDP-glucoronyltransferase (UDPGT) activity assayed with p-nitrophenol as substrate was increased 1.6- to 2.0-fold. These results show that musk xylene induces both Phase I cytochrome P450 mixed-function oxidase (CYP1A2 specific) and Phase II metabolizing enzyme systems (DT-diaphorase, GST Ya subunit and UDPGT) in rat liver.[1]

References

  1. An unusual profile of musk xylene-induced drug-metabolizing enzymes in rat liver. Iwata, N., Minegishi, K., Suzuki, K., Ohno, Y., Igarashi, T., Satoh, T., Takahashi, A. Biochem. Pharmacol. (1993) [Pubmed]
 
WikiGenes - Universities