The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Yeast nucleoporin mutants are defective in pre-tRNA splicing.

We have screened nucleoporin mutants for the inhibition of tRNA splicing, which has previously been proposed to be coupled to transport. Strains mutant for Nup49p or Nup116p, or genetically depleted of Nup145p, strongly accumulated unspliced pre-tRNAs. Splicing was inhibited for all 10 families of intron-containing pre-tRNA, but no effects on 5' or 3' end processing were detected. Strains mutant for Nup133p or Nsp1p accumulated lower levels of several unspliced pre-tRNAs. In contrast, no accumulation of any pre-tRNA was observed in strains mutant for Nup1p, Nup85p, or Nup100p. Other RNA processing reactions tested, pre-rRNA processing, pre-mRNA splicing, and small nucleolar and small nuclear RNA synthesis, were not clearly affected for any nucleoporin mutant. These data provide evidence for a coupling between pre-tRNA splicing and nuclear-cytoplasmic transport. Mutation of NUP49, NUP116, or NUP145 has previously been shown to lead to nuclear poly(A)+ RNA accumulation, indicating that these nucleoporins play roles in the transport of more than one class of RNA.[1]


  1. Yeast nucleoporin mutants are defective in pre-tRNA splicing. Sharma, K., Fabre, E., Tekotte, H., Hurt, E.C., Tollervey, D. Mol. Cell. Biol. (1996) [Pubmed]
WikiGenes - Universities