The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The Y-box motif mediates redox-dependent transcriptional activation in mouse cells.

We show here that the OxyR response element (ORE) in the bacterial oxyR promoter can also function as a redox-dependent enhancer in mammalian cells. Fusion of ORE to an SV40 basal promoter driving chloramphenicol acetyltransferase (CAT) expression confers H2O2 inducibility to expression of the cat gene in mouse Hepa-1 hepatoma cells. Nuclear extracts from these cells contain DNA-binding proteins that specifically interact with ORE DNA, cannot be completed by cognate oligonucleotides to AP-1 or NF kappa B, and are constitutively expressed, since treatment with H2O2 causes no detectable changes in binding activity or DNA-protein interaction. Recombinant cDNA clones that express ORE-binding proteins were isolated from a mouse hepatoma expression library and found to be representatives of two different members of the murine Y-box family of transcription factors. Canonical Y-box and ORE oligonucleotides compete with each other for binding to Y-box proteins in gel shift assays and antibodies to FRGY2, a Xenopus Y-box protein, supershift both Y-box and ORE DNA-protein complexes. In addition, antisense oligonucleotides to mouse YB-1 mRNA abolish induction of ORE-mediated cat expression by H2O2, and luciferase reporter constructs containing ORE, or the Y-box from the human MHC class II HLA-DQ gene, exhibit identical dose-dependent H2O2 inducibilities, which can be abolished by addition of 2-mercaptoethanol to the culture medium. These results suggest that the Y-box proteins may be an integral component of a eukaryotic redox signaling pathway.[1]

References

  1. The Y-box motif mediates redox-dependent transcriptional activation in mouse cells. Duh, J.L., Zhu, H., Shertzer, H.G., Nebert, D.W., Puga, A. J. Biol. Chem. (1995) [Pubmed]
 
WikiGenes - Universities