The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Purification and molecular characterization of a novel 16-kDa galectin from the nematode Caenorhabditis elegans.

In our previous study (Hirabayashi, J., Satoh, M., Ohyama, Y., and Kasai, K. (1992) J. Biochem. (Tokyo) 111, 553-555), two beta-galactoside-binding lectins (apparent subunit molecular masses, 16 and 32 kDa, respectively) were identified in the nematode Caenorhabditis elegans. The subsequent study revealed that the 32-kDa lectin is a member of the galectin family. Since the 32-kDa galectin was found to consist of two homologous domains (approximately 16 kDa), 16-kDa lectin was thought to be a degradation product of the 32-kDa galectin. To clarify this, the 16-kDa lectin was purified by an improved procedure employing extraction with a calcium-supplemented buffer. The purified 16-kDa lectin was found to exist as a dimer (approximately 30 kDa) and showed hemagglutinating activity toward trypsinized rabbit erythrocytes, which was inhibited by lactose. Almost the whole sequence of the 16-kDa polypeptide (approximately 95%, 135 amino acids) was determined after digestion with various proteases. Based on the obtained information, a full-length cDNA was cloned with the aid of RNA-polymerase chain reaction. The clone encoded 146 amino acids including initiator methionine (calculated molecular mass, 15,928 Da). Based on these results, it was concluded that the 16-kDa lectin is a novel member of the galectin family, but not a degradation product of the 32-kDa galectin as had previously thought. However, the 16-kDa galectin showed relatively low sequence similarities to both the N-terminal and the C-terminal domains of the 32-kDa galectin (28% and 27% identities, respectively) and to various vertebrate galectins (14-27%). Nonetheless, all of the critical amino acids involved in carbohydrate binding were conserved. These observations suggest that, in spite of phylogenic distance between nematodes and vertebrates, both the 16-kDa and 32-kDa nematode isolectins have conserved essentially the same function(s) as those of vertebrate galectins, probably through recognition of a key disaccharide moiety, "N-acetyllactosamine."[1]


WikiGenes - Universities