The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

TFIIB-directed transcriptional activation by the orphan nuclear receptor hepatocyte nuclear factor 4.

The orphan nuclear receptor hepatocyte nuclear factor 4 (HNF-4) is required for development and maintenance of the liver phenotype. HNF-4 activates several hepatocyte-specific genes, including the gene encoding apolipoprotein AI (apoAI), the major protein component of plasma high-density lipoprotein. The apoAI gene is activated by HNF-4 through a nuclear receptor binding element (site A) located in its liver-specific enhancer. To decipher the mechanism whereby HNF-4 enhances apoAI gene transcription, we have reconstituted its activity in a cell-free system. Functional HNF-4 was purified to homogeneity from a bacterial expression system. In in vitro transcription assays employing nuclear extract from HeLa cells, which do not contain HNF-4, recombinant HNF-4 stimulated transcription from basal promoters linked to site A. Activation by HNF-4 did not exhibit a ligand requirement, but phosphorylation of HNF-4 in the in vitro transcription system was observed. The activation function of HNF-4 was localized to a domain displaying strong homology to the conserved AF-2 region of nuclear receptors. Dissection of the transcription cycle revealed that HNF-4 activated transcription by facilitating assembly of a preinitiation complex intermediate consisting of TBP, the TATA box-binding protein component of TFIID and TFIID, via direct physical interactions with TFIIB. However, recruitment of TFIIB by HNF-4 was not sufficient for activation, since HNF-4 deletion derivatives lacking AF-2 bound TFIIB. On the basis of these results, HNF-4 appears to activate transcription at two distinct levels. The first step involves AF-2-independent recruitment of TFIIB to the promoter complex; the second step is AF-2 dependent and entails entry of preinitiation complex components acting downstream of TFIIB.[1]

References

 
WikiGenes - Universities