The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Multicenter clinical validation of an on-line monitor of dialysis adequacy.

Quantitation of hemodialysis by measuring changes in blood solute concentration requires careful timing when taking the postdialysis blood sample to avoid errors from postdialysis rebound and from recirculation of blood through the access device. It also requires complex mathematical interpretation to account for solute disequilibrium in the patient. To circumvent these problems, hemodialysis can be quantified and its adequacy assessed by direct measurement of the urea removed in the dialysate. Because total dialysate collection is impractical, an automated method was developed for measuring dialysate urea-nitrogen concentrations at frequent intervals during treatment. A multicenter clinical trial of the dialysate monitoring device, the Biostat 1000 (Baxter Healthcare Corporation, McGaw Park, IL) was conducted to validate the measurements of urea removed, the delivered dialysis dose (Kt/V), and net protein catabolism (PCR). The results were compared with a total dialysate collection in each patient. During 29 dialyses in 29 patients from three centers, the paired analysis of urea removed, as estimated by the dialysate monitor compared with the total dialysate collection, showed no significant difference (14.7 +/- 4.7 g versus 14.8 +/- 5.1 g). Similarly, measurements of Kt/V and PCR showed no significant difference (1.30 +/- 0.18 versus 1.28 +/- 0.19, respectively, for Kt/V and 42.3 +/- 15.7 g/day versus 52.2 +/- 17.4 g/day for PCR). When blood-side measurements during the same dialyses were analyzed with a single-compartment, variable-volume model of urea kinetics, Kt/V was consistently overestimated (1.49 +/- 0.29/dialysis, P < 0.001), most likely because of failure to consider urea disequilibrium. Because urea disequilibrium is difficult to quantitate during each treatment, dialysate measurements have obvious advantages. The dialysate monitor eliminated errors from dialysate bacterial contamination, simplified dialysate measurements, and proved to be a reliable method for quantifying and assuring dialysis adequacy.[1]

References

  1. Multicenter clinical validation of an on-line monitor of dialysis adequacy. Depner, T.A., Keshaviah, P.R., Ebben, J.P., Emerson, P.F., Collins, A.J., Jindal, K.K., Nissenson, A.R., Lazarus, J.M., Pu, K. J. Am. Soc. Nephrol. (1996) [Pubmed]
 
WikiGenes - Universities