The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Control of nasal dilator muscle activities during exercise: role of nasopharyngeal afferents.

Our primary aim was to determine whether reducing the activity of nasal airway receptors would influence drive to the nasal dilator muscles (NDMs) during exercise. We used lidocaine (2%) or nasal splints to diminish afferent airway receptor activity and measured the electromyogram (EMG) activity of the NDMs during incremental bicycle exercise in subjects who breathed nasally. NDM EMG activities increased as a function of exercise intensity but were not changed by lidocaine and were only slightly reduced by splinting. Similarly, neither intervention altered the normal decrease in NDM EMG activity associated with reductions in airway resistance evoked by He-O2 breathing. We also compared the NDM EMG response to exercise with that evoked by CO2 rebreathing at rest to determine whether the nature of the ventilatory stimulus influences drive to the NDMs; comparisons were made at constant levels of nasal inspired ventilation and, therefore, constant total ventilatory output. The increase in EMG activity was much higher during exercise compared with hyperoxic hypercapnia. In conclusion, 1) desensitizing the nasal airway does not alter NDM activity significantly during exercise and 2) exercise results in much greater increases in NDM activity compared with hypercapnia, indicating that different ventilatory stimuli can evoke more or less activation of upper airway motoneurons, even when comparisons are made at constant levels of total ventilatory output.[1]


  1. Control of nasal dilator muscle activities during exercise: role of nasopharyngeal afferents. Sullivan, J., Fuller, D., Fregosi, R.F. J. Appl. Physiol. (1996) [Pubmed]
WikiGenes - Universities