The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Airway Resistance

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Airway Resistance

  • Putative therapeutic application of NPY in rhinitis has been recently suggested because intranasal administration of exogenous NPY in human beings reduces nasal airway resistance and vascular permeability without affecting submucosal gland secretion [1].
  • The purpose of this study was to determine whether heparin inhibits the late-phase response to hyperventilation, which is characterized by increased peripheral airway resistance (RP), eicosanoid mediator production, neutrophilic/ eosinophilic inflammation, and airway hyperreactivity (AHR) at 5 h after dry air challenge (DAC) [2].
  • Salbutamol inhibits neutropenia, increased airway resistance, and gas exchange abnormalities provoked by platelet-activating factor (PAF) challenge in normal persons [3].
  • Nine men (age 49 +/- 10 yr) with mild to moderate sleep apnea syndrome (AHI of 25.1 +/- 10. 8/h) were studied and 340 ONAREs (hypopneas and upper airway resistance episodes) were randomly selected for scoring by two experienced observers [4].
  • The physiology of the upper airway during sleep mimics the behavior of a collapsible tube; CPAP prevents the negative intraluminal pressure thought to cause apnea, hypopnia and increases in airway resistance [5].

Psychiatry related information on Airway Resistance

  • As the change in ventilation has been shown to occur abruptly at transitions between alpha and theta electroencephalogram activity, it was of interest to determine whether the increase in airway resistance between wakefulness and sleep also occurs at these transitions [6].

High impact information on Airway Resistance


Chemical compound and disease context of Airway Resistance


Biological context of Airway Resistance


Anatomical context of Airway Resistance


Associations of Airway Resistance with chemical compounds

  • Compared to nonsensitized monkeys, there was a fourfold reduction in the dose of histamine aerosol necessary to produce a 150% increase in airway resistance in sensitized monkeys [27].
  • During aerosol challenge with HDMA, sensitized monkeys exhibited cough and rapid shallow breathing and increased airway resistance, which was reversed by albuterol aerosol treatment [27].
  • RESULTS: Anti-PDGF-beta neutralizing antibody significantly inhibited both the elevation of airway resistance elicited by 1.25 and 2.5 mg/mL acetylcholine and the increase in the airway wall thickening induced by DEPs [28].
  • Baseline specific airway resistance was significantly reduced by both doses of atropine but was no different after 2.08 mg than after 0.26 mg [29].
  • Airway resistance was measured to verify the occurrence of airway narrowing and increased significantly in sensitized rats after allergen challenge but did not change in controls [30].

Gene context of Airway Resistance


Analytical, diagnostic and therapeutic context of Airway Resistance


  1. Attenuation of allergen-evoked nasal responses by local pretreatment with exogenous neuropeptide Y in atopic patients. Lacroix, J.S., Mosimann, B.L. J. Allergy Clin. Immunol. (1996) [Pubmed]
  2. Heparin inhibits hyperventilation-induced late-phase hyperreactivity in dogs. Suzuki, R., Freed, A.N. Am. J. Respir. Crit. Care Med. (2002) [Pubmed]
  3. Inhibition of PAF-induced gas exchange defects by beta-adrenergic agonists in mild asthma is not due to bronchodilation. Díaz, O., Barberà, J.A., Marrades, R., Chung, K.F., Roca, J., Rodriguez-Roisin, R. Am. J. Respir. Crit. Care Med. (1997) [Pubmed]
  4. Comparison of esophageal pressure with pulse transit time as a measure of respiratory effort for scoring obstructive nonapneic respiratory events. Argod, J., Pépin, J.L., Smith, R.P., Lévy, P. Am. J. Respir. Crit. Care Med. (2000) [Pubmed]
  5. Methods to stabilize the upper airway using positive pressure. Rapoport, D.M. Sleep. (1996) [Pubmed]
  6. Changes in airway resistance during sleep onset. Kay, A., Trinder, J., Bowes, G., Kim, Y. J. Appl. Physiol. (1994) [Pubmed]
  7. Emergency treatment of asthma. A comparison of two treatment regimens. Josephson, G.W., MacKenzie, E.J., Lietman, P.S., Gibson, G. JAMA (1979) [Pubmed]
  8. Requirement for the chemokine receptor CCR6 in allergic pulmonary inflammation. Lukacs, N.W., Prosser, D.M., Wiekowski, M., Lira, S.A., Cook, D.N. J. Exp. Med. (2001) [Pubmed]
  9. Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness. Temann, U.A., Geba, G.P., Rankin, J.A., Flavell, R.A. J. Exp. Med. (1998) [Pubmed]
  10. Airflow limitation in morbidly obese, nonsmoking men. Rubinstein, I., Zamel, N., DuBarry, L., Hoffstein, V. Ann. Intern. Med. (1990) [Pubmed]
  11. Effects of acute and chronic administration of beta-adrenoceptor ligands on airway function in a murine model of asthma. Callaerts-Vegh, Z., Evans, K.L., Dudekula, N., Cuba, D., Knoll, B.J., Callaerts, P.F., Giles, H., Shardonofsky, F.R., Bond, R.A. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  12. Effect of isoproterenol inhalation on airway resistance in chronic bronchopulmonary dysplasia. Kao, L.C., Warburton, D., Platzker, A.C., Keens, T.G. Pediatrics (1984) [Pubmed]
  13. Cysteinyl leukotriene-dependent interleukin-5 production leading to eosinophilia during late asthmatic response in guinea-pigs. Nabe, T., Yamashita, K., Miura, M., Kawai, T., Kohno, S. Clin. Exp. Allergy (2002) [Pubmed]
  14. Hypertonic saline aerosol increases airway reactivity in the canine lung periphery. Suzuki, R., Freed, A.N. J. Appl. Physiol. (2000) [Pubmed]
  15. Nasal response to substance P and methacholine in subjects with and without allergic rhinitis. Devillier, P., Dessanges, J.F., Rakotosihanaka, F., Ghaem, A., Boushey, H.A., Lockhart, A., Marsac, J. Eur. Respir. J. (1988) [Pubmed]
  16. Inhaled beta 2-agonist and positive expiratory pressure in bronchial asthma. Influence on airway resistance and functional residual capacity. Christensen, E.F., Nørregaard, O., Jensen, L.W., Dahl, R. Chest (1993) [Pubmed]
  17. Airway and lung tissue mechanics in asthma. Effects of albuterol. Kaczka, D.W., Ingenito, E.P., Israel, E., Lutchen, K.R. Am. J. Respir. Crit. Care Med. (1999) [Pubmed]
  18. Greater velocity and magnitude of airway narrowing in immature than in mature rabbit lung explants. Duguet, A., Wang, C.G., Gomes, R., Ghezzo, H., Eidelman, D.H., Tepper, R.S. Am. J. Respir. Crit. Care Med. (2001) [Pubmed]
  19. Pharmacokinetic-pharmacodynamic modeling of terbutaline bronchodilation in asthma. Oosterhuis, B., Braat, M.C., Roos, C.M., Wemer, J., Van Boxtel, C.J. Clin. Pharmacol. Ther. (1986) [Pubmed]
  20. Airway and tissue resistance in wheezy infants: effects of albuterol. Jackson, A.C., Tennhoff, W., Kraemer, R., Frey, U. Am. J. Respir. Crit. Care Med. (1999) [Pubmed]
  21. Comparison of respiratory and cardiovascular effects of isoproterenol, propranolol, and practolol in asthmatic and normal subjects. Ryo, U.Y., Townley, R.G. J. Allergy Clin. Immunol. (1976) [Pubmed]
  22. Endotoxin induces respiratory failure and increases surfactant turnover and respiration independent of alveolocapillary injury in rats. Davidson, K.G., Bersten, A.D., Barr, H.A., Dowling, K.D., Nicholas, T.E., Doyle, I.R. Am. J. Respir. Crit. Care Med. (2002) [Pubmed]
  23. Alteration of airway neuropeptide expression and development of airway hyperresponsiveness following respiratory syncytial virus infection. Dakhama, A., Park, J.W., Taube, C., El Gazzar, M., Kodama, T., Miyahara, N., Takeda, K., Kanehiro, A., Balhorn, A., Joetham, A., Loader, J.E., Larsen, G.L., Gelfand, E.W. Am. J. Physiol. Lung Cell Mol. Physiol. (2005) [Pubmed]
  24. Do nasal mast cells release histamine on stimulation with substance P in allergic rhinitis? Braunstein, G., Buvry, A., Lacronique, J., Desjardins, N., Frossard, N. Clin. Exp. Allergy (1994) [Pubmed]
  25. The contribution of histamine to the action of bradykinin in the human nasal airway. Austin, C.E., Dear, J.W., Neighbour, H., Lund, V., Foreman, J.C. Immunopharmacology (1996) [Pubmed]
  26. Influence of cervical sympathetic nerves on ventilation and upper airway resistance in the rat. O'Halloran, K.D., Curran, A.K., Bradford, A. Eur. Respir. J. (1998) [Pubmed]
  27. Allergic asthma induced in rhesus monkeys by house dust mite (Dermatophagoides farinae). Schelegle, E.S., Gershwin, L.J., Miller, L.A., Fanucchi, M.V., Van Winkle, L.S., Gerriets, J.P., Walby, W.F., Omlor, A.M., Buckpitt, A.R., Tarkington, B.K., Wong, V.J., Joad, J.P., Pinkerton, K.B., Wu, R., Evans, M.J., Hyde, D.M., Plopper, C.G. Am. J. Pathol. (2001) [Pubmed]
  28. Platelet-derived growth factor is involved in the augmentation of airway responsiveness through remodeling of airways in diesel exhaust particulate-treated mice. Yamashita, N., Sekine, K., Miyasaka, T., Kawashima, R., Nakajima, Y., Nakano, J., Yamamoto, T., Horiuchi, T., Hirai, K., Ohta, K. J. Allergy Clin. Immunol. (2001) [Pubmed]
  29. Variable inhibition of histamine-induced bronchoconstriction by atropine in subjects with asthma. Sheppard, D., Epstein, J., Skoogh, B.E., Bethel, R.A., Nadel, J.A., Boushey, H.A. J. Allergy Clin. Immunol. (1984) [Pubmed]
  30. Lowering of interstitial fluid pressure will enhance edema in trachea of albumin-sensitized rats. Woie, K., Westerberg, E., Reed, R.K. Am. J. Respir. Crit. Care Med. (1996) [Pubmed]
  31. Respiratory adaptations to lung morphological defects in adult mice lacking Hoxa5 gene function. Kinkead, R., LeBlanc, M., Gulemetova, R., Lalancette-Hébert, M., Lemieux, M., Mandeville, I., Jeannotte, L. Pediatr. Res. (2004) [Pubmed]
  32. Regulation of murine airway responsiveness by endothelial nitric oxide synthase. Feletou, M., Lonchampt, M., Coge, F., Galizzi, J.P., Bassoullet, C., Merial, C., Robineau, P., Boutin, J.A., Huang, P.L., Vanhoutte, P.M., Canet, E. Am. J. Physiol. Lung Cell Mol. Physiol. (2001) [Pubmed]
  33. Phenotypic and physiologic characterization of transgenic mice expressing interleukin 4 in the lung: lymphocytic and eosinophilic inflammation without airway hyperreactivity. Rankin, J.A., Picarella, D.E., Geba, G.P., Temann, U.A., Prasad, B., DiCosmo, B., Tarallo, A., Stripp, B., Whitsett, J., Flavell, R.A. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  34. Altered expression and in vivo lung function of protease-activated receptors during influenza A virus infection in mice. Lan, R.S., Stewart, G.A., Goldie, R.G., Henry, P.J. Am. J. Physiol. Lung Cell Mol. Physiol. (2004) [Pubmed]
  35. The role of CD23 on allergen-induced IgE levels, pulmonary eosinophilia and bronchial hyperresponsiveness in mice. Riffo-Vasquez, Y., Spina, D., Thomas, M., Gilbey, T., Kemeny, D.M., Page, C.P. Clin. Exp. Allergy (2000) [Pubmed]
  36. Effect of histamine and methacholine on nasal airway resistance in atopic and nonatopic subjects. Comparison with bronchial challenge and skin test responses. McLean, J.A., Mathews, K.P., Solomon, W.R., Brayton, P.R., Ciarkowski, A.A. J. Allergy Clin. Immunol. (1977) [Pubmed]
  37. Muscarinic blockade of methacholine induced airway and parenchymal lung responses in anaesthetised rats. Tulić, M.K., Wale, J.L., Peták, F., Sly, P.D. Thorax (1999) [Pubmed]
  38. Intravenous lidocaine and bupivacaine dose-dependently attenuate bronchial hyperreactivity in awake volunteers. Groeben, H., Schwalen, A., Irsfeld, S., Stieglitz, S., Lipfert, P., Hopf, H.B. Anesthesiology (1996) [Pubmed]
  39. Effects of prostaglandin E1 on canine nasal vascular and airway resistances. Agnes, M., Lung, K.Y., Wang, J.C. J. Pharmacol. Exp. Ther. (1984) [Pubmed]
WikiGenes - Universities