The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Recombinant scinderin enhances exocytosis, an effect blocked by two scinderin-derived actin-binding peptides and PIP2.

The cortical F-actin cytoskeleton represents a negative control for secretion, and it must be locally disassembled to allow chromaffin vesicle exocytosis. Recombinant scinderin (a Ca(2+)-dependent F-actin-severing protein) potentiated Ca(2+)-evoked F-actin disassembly and exocytosis in permeabilized chromaffin cells, an effect blocked by peptides Sc-ABP1 and Sc-ABP2 (with sequences corresponding to two actin-binding sites of scinderin), exogenous gamma-actin, or phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 effect was blocked by peptide Sc-PIP2BP (with sequence corresponding to a PIP2-binding site of scinderin). Truncated scinderin254-715 (lacking actin-severing domains) did not potentiate exocytosis. Sc-ABP1, Sc-ABP2, and gamma-actin also inhibited exocytosis in the absence of recombinant scinderin, suggesting an inhibition of endogenous scinderin. Results suggest that scinderin-evoked cortical F-actin disassembly is required for secretion and that scinderin is an important component of the exocytotic machinery.[1]

References

 
WikiGenes - Universities