Recombinant scinderin enhances exocytosis, an effect blocked by two scinderin-derived actin-binding peptides and PIP2.
The cortical F-actin cytoskeleton represents a negative control for secretion, and it must be locally disassembled to allow chromaffin vesicle exocytosis. Recombinant scinderin (a Ca(2+)-dependent F-actin-severing protein) potentiated Ca(2+)-evoked F-actin disassembly and exocytosis in permeabilized chromaffin cells, an effect blocked by peptides Sc-ABP1 and Sc-ABP2 (with sequences corresponding to two actin-binding sites of scinderin), exogenous gamma-actin, or phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 effect was blocked by peptide Sc-PIP2BP (with sequence corresponding to a PIP2-binding site of scinderin). Truncated scinderin254-715 (lacking actin-severing domains) did not potentiate exocytosis. Sc-ABP1, Sc-ABP2, and gamma-actin also inhibited exocytosis in the absence of recombinant scinderin, suggesting an inhibition of endogenous scinderin. Results suggest that scinderin-evoked cortical F-actin disassembly is required for secretion and that scinderin is an important component of the exocytotic machinery.[1]References
- Recombinant scinderin enhances exocytosis, an effect blocked by two scinderin-derived actin-binding peptides and PIP2. Zhang, L., Marcu, M.G., Nau-Staudt, K., Trifaró, J.M. Neuron (1996) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg