The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Rebamipide ameliorates hepatic dysfunction induced by ischemia/reperfusion in rats.

The relationship between lipid peroxidation and alterations in hepatic secretory function and microsomal function during hepatic ischemia/reperfusion was studied. Rats pretreated with free radical scavengers were subjected to 60 min of hepatic ischemia and to 1 and 5 h of reperfusion thereafter. Serum aminotransferase level and microsomal lipid peroxidation were markedly increased by ischemia/reperfusion. These increases were significantly attenuated by rebamipide, alpha-tocopherol or allopurinol. Bile flow and cholate output were markedly decreased by ischemia/reperfusion and free radical scavengers, especially rebamipide, restored their secretion. NADPH-cytochrome P450 reductase activity and cytochrome P450 content were decreased by ischemia/reperfusion. Rebamipide prevented the decrease of the NADPH-cytochrome P450 reductase activity but had little effect on the cytochrome P450 content. Aminopyrine N-demethylase activity was decreased and aniline p-hydroxylase was increased by ischemia/reperfusion, which were prevented by alpha-tocopherol and allopurinol, but not by rebamipide. Our findings suggest that ischemia/reperfusion diminishes hepatic secretory function and microsomal function by increasing lipid peroxidation, and rebamipide significantly ameliorates these changes through its free radical scavenging activity.[1]


WikiGenes - Universities